Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Главная > справочник > химическая энциклопедия: Механические свойства

главная > справочник > химическая энциклопедия:

Механические свойства

Механические свойства материалов, определяют их поведение под действием механической нагрузки. Основные механические свойства твердых тел-деформационные (жесткость, пластичность. ползучесть, твердость. предельные деформации при разрушении), прочностные (предел прочности s, долговечность, усталостная прочность, работа разрушения при ударном воздействии), фрикционные (коэф. трения и износа); для жидкостей основное механические свойства -вязкость. Значения показателей механические свойства не являются физ. постоянными вещества; они могут зависеть от формы и размеров изделия, условий испытания, состава окружающей среды, состояния поверхности испытуемого образца, фазового и релаксационных состояний материала, определяемых его предысторией, составом, структурой. Поэтому для сравнения различных материалов по механическим свойствам важно строго стандартизировать условия и режим их определения.

Механические свойства могут изменяться во времени. Для многих материалов (монокристаллич., ориентированных и армированных пластиков, волокон) характерна резкая анизотропия механических свойств. Хотя механические свойства зависят от сил взаимодействия между частицами (ионами, атомами. молекулами), составляющими вещество, прямое их сопоставление со структурными характеристиками затруднено из-за дефектов кристаллич. структуры и неоднородностей, присущих реальным веществам. Так, теоретические значения предела прочности на растяжение, составляющие

0,1 модуля Юнга вещества, в 2-3 раза превышают достигнутые значения для предельно ориентированных волокон и монокристаллов и в сотни раз-для реальных конструкционных материалов.

По механическим свойствам различают следующие основные типы материалов: 1) жесткие и хрупкие (чугуны, высокоориентированные волокна, камни и др.), для них характерны модули Юнга > 10 ГПа и низкие разрывные удлинения (до неск. %); 2) твердые и пластичные (мн. пластмассы. мягкие стали, некоторые цветные металлы), для них характерен модуль Юнга > 2 ГПа и большие разрывные удлинения; 3) эластомеры (резины) — низкомодульные вещества (равновесный модуль высокоэластичности порядка 0,1-2 МПа), способные к огромным обратимым деформациям (сотни %); 4) вязкопластичные среды, способные к неограниченным деформациям и сохраняющие приданную им форму после снятия нагрузки (глины, пластичные смазки, бетонные смеси); 5) жидкости, расплавы солей. металлов, полимеров и т.п., способные к необратимым деформациям (течению) и принимающие заданную форму. Возможны также разнообразные промежуточные случаи проявления механических свойств.

Для описания механических свойств идеальных моделей (см. Реология)справедливы линейные законы: для деформационных свойств- Гука закон (напряжения пропорциональны деформациям), для фрикционных свойств-закон Кулона (сила трения пропорциональна нормальной нагрузке), для вязкостных свойств-закон Ньютона (касательные напряжения пропорциональны скорости сдвига) и т.п. Однако поведение реальных тел гораздо сложнее и требует для своего описания различных нелинейных соотношений. Определение механических свойств материала является основой при выборе области его применения, условий формирования из него изделий, их эксплуатации. Для основных классов твердых технических материалов характерны след. значения предела прочности а (на растяжение) и модуля Юнга

Для технического применения часто решающее значение имеет отношение а к плотности вещества. По этому показателю волокна из орг. полимеров и армированные пластики имеют большие преимущества по сравнению с традиц. конструкц. материалами.

Механические свойства определяют по результатам механических испытаний, которые проводят либо с целью получения сопоставимых характеристик различных веществ, либо для измерения условных показателей поведения конкретного изделия в реальных условиях его использования. Механические свойства веществ разл. хим. природы чрезвычайно разнообразны. Поэтому в настоящее время сложились самостоятельные теоретические подходы к описанию механических свойств основных типов материалов (металлы, полимеры, грунты и др. сыпучие среды, композиты, строительных материалов, жидкости и т.д.).

См. также Прочность, Трение.

Лит.: Крагельский И. В., Трение и износ, 2 изд., М., 1968; Регель В. Р., Слуцкер А. И., Томашевский Э. Е., Кинетическая природа прочности твердых тел, М., 1974; Виноградов Г. В., Малкин А. Я., Реология полимеров, М., 1977. ©А. Я. Малкин.

Интересные и нужные сведения о строительных материалах и технологиях

Механические свойства характеризуются способностью материала сопротивляться всем видам внешних воздействий с приложением силы. По совокупности признаков различают прочность материала при сжатии, изгибе, ударе, кручении и т. д., твердость, пластичность, упругость, истираемость.

Прочность — свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки. Изучением этого свойства материалов занимается специальная наука — сопротивление материалов. Ниже излагаются общие понятия о прочности материалов, необходимые для изучения основных свойств строительных материалов.

Материалы, находясь в сооружении, могут испытывать различные нагрузки. Наиболее характерными для строительных конструкций являются сжатие, растяжение, изгиб и удар. Каменные материалы (гранит, бетон) хорошо сопротивляются сжатию и намного хуже (в 5. 50 раз) — растяжению, изгибу, удару, поэтому каменные материалы используют главным образом в конструкциях, работающих на сжатие. Такие материалы, как металл и древесина, хорошо работают на сжатие, изгиб и растяжение, поэтому их используют в конструкциях, испытывающих эти нагрузки.

Прочность строительных материалов характеризуется пределом прочности.

Пределом прочности (Па) называют напряжение, соответствующее нагрузке, вызывающей разрушение образца материала. Предел прочности при сжатии различных материалов 0,5. 1000 МПа и более. Прочность на сжатие определяют испытанием образцов на механических или гидравлических прессах. Для этой цели применяют специально изготовленные образцы, формы куба со стороной 2. 30 см. Из более однородных материалов образцы делают меньших размеров, а из менее однородных — больших размеров. Иногда на сжатие испытывают образцы, имеющие форму цилиндров или призм. При испытании на растяжение металлов применяют образцы в виде круглых стержней или полос; при испытании на растяжение вяжущих веществ используют образцы в виде восьмерок.

Для определения предела прочности образцы изготовляют в соответствии с указаниями ГОСТов. Размеры и форму образцов строго выдерживают, так как они существенно влияют на результат испытания. Так, призмы и цилиндры меньше сопротивляются сжатию, чем кубы того же поперечного сечения; наоборот, низкие призмы (высота меньше стороны) больше сопротивляются сжатию, чем кубы. Это объясняется тем, что при сжатии образца плиты пресса плотно прижимаются к опорным плоскостям его и возникающие силы трения удерживают от расширения прилегающие поверхности образца, а боковые центральные части образца испытывают поперечное расширение, которое удерживается только силами сцепления между частицами. Поэтому чем дальше находится сечение образца от плит пресса, тем легче происходит разрушение в этом сечении и образца в целом. По этой же причине при испытании хрупких материалов (камня, бетона, кирпича и т. п.) образуется характерная форма разрушения — образец превращается в две усеченные пирамиды, сложенные вершинами.

На прочность материала оказывают влияние не только форма и размер образца, но и характер его поверхности и скорость приложения нагрузки. Поэтому для получения сравнимых результатов нужно придерживаться стандартных методов испытания, установленных для данного материала. Прочность зависит также от структуры материала, его плотности (пористости), влажности, направления приложения нагрузки. На изгиб испытывают образцы в виде балочек, расположенных на двух опорах и нагруженных одним или двумя сосредоточенными грузами, увеличиваемыми до тех пор, пока балочки не разрушатся.

В материалах конструкций допускаются напряжения, составляющие только часть предела прочности, таким образом, создается запас прочности. При установлении величины запаса прочности учитывают неоднородность материала — чем менее однороден материал, тем выше должен быть запас прочности.

При установлении коэффициента запаса прочности важными являются агрессивность эксплуатационной среды и характер приложения нагрузки. Агрессивная среда и знакопеременные нагрузки, вызывающие усталость материала, требуют более высокого коэффициента запаса прочности. Запас прочности, обеспечивающий сохранность и долговечность конструкций зданий и сооружений, устанавливают нормами проектирования и определяют видом и качеством материала, условиями работы и классом здания по долговечности, а также специальными технико-экономическими расчетами.

За последние годы в практику строительства внедряются новые методы контроля прочности, позволяющие испытывать без разрушения образцы или отдельные элементы конструкций. Этими методами можно испытывать изделия и конструкции при их изготовлении на заводах и строительных объектах, а также после установки их в зданиях и сооружениях.

Известны акустические методы, из которых наибольшее распространение получили импульсный и резонансный. Указанным методам присуще общее основное положение, а именно: физические свойства материала или изделия оцениваются по косвенным показателям — скорости распространения ультразвука или времени распространения волны удара, а также частотой собственных колебаний материала и характеристикой их затухания.

Твердость — способность материала сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Для определения твердости существует несколько методов.

Твердость каменных материалов оценивают по шкале Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости. Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один чертит, а другой чертится этим материалом. Твердость металлов и пластмасс определяют вдавливанием стального шарика. От твердости материалов зависит их истираемость. Это свойство материала важно при обработке, а также при использовании его для полов, дорожных покрытий.

Истираемость материала характеризуется потерей первоначальной массы, отнесенной к 1 м 2 площади истирания. Сопротивление истиранию определяют для материалов, предназначенных для полов, дорожных покрытий, лестничных ступеней и др.

Износом называют разрушение материала при совместном действии истирания и удара. Прочность при износе оценивается потерей в массе, выраженной в процентах. Износу подвергают материалы для дорожных покрытий и балласта железных дорог.

Сопротивление удару имеет большое значение для материалов, применяемых в полах и дорожных покрытиях. Предел прочности материала при ударе (Дж/м 3 ) характеризуется количеством работы, затраченной на разрушение образца, отнесенной к единице объема материала. Испытание материалов на удар производят на специальном приборе — копре.

Деформация — изменение размеров и формы материалов под нагрузкой. Если после снятия нагрузки образец материала восстанавливает свои размеры и форму, то деформацию называют упругой, если же он частично или полностью сохраняет изменение формы после снятия нагрузки, то такую деформацию называют пластической.

Упругость — свойство материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины (устанавливаемой техническими условиями на данный материал).

Пластичность — свойство материала изменять свою форму под нагрузкой без появления трещин (без нарушения сплошности) и сохранять эту форму после снятия нагрузки. Все материалы делятся на пластичные и хрупкие. К пластичным материалам относят сталь, медь, глиняное тесто, нагретый битум и т. п. Хрупкие материалы разрушаются внезапно без значительной деформации. К ним относят каменные материалы. Хрупкие материалы хорошо сопротивляются только сжатию и плохо — растяжению, изгибу, удару.

Методы очистки воды

Для того, чтобы очистить воду в городской квартире, не обязательно отдавать ее на анализ в лабораторию. Состав важен, однако «букет» водопроводной воды, как правило, предсказуем: предельные значения уровня вредных веществ не превышены, соответствие СанПиН соблюдено. Но пить воду прямо из крана мы вам все же не советуем: вредные вещества, хоть и в небольших концентрациях, там присутствуют и в долгосрочной перспективе могут обернуться головной болью.

Фильтрация — это комплексный процесс, сочетающий в себе несколько способов очистки. Познакомимся с основными из них.

Механическая (предварительная) фильтрация

Самый простой способ очистки воды: она проходит через своеобразное «сито», и все частицы крупнее его ячеек задерживаются. Один из самых распространенных материалов для картриджей механической фильтрации — полипропилен: химически инертный, безвредный и бюджетный материал, поры которого можно «подогнать» под разный (так или иначе достаточно крупный) диаметр.

Механическая фильтрация активно используется на городских водоканалах, особенно при заборе воды из открытых источников — рек, озер, водохранилищ. Вода очищается от песка, глины, растений и прочих нежелательных «добавок». Вот только поры фильтрующего материала достаточно велики, и растворенные загрязнители (активный хлор, нитраты и т.д.) или микроорганизмы через предфильтры пройдут совершенно спокойно. Но для их устранения предусмотрены совсем другие фильтры.

Это не значит, что эти «другие» более продвинутые: просто у предфильтров и фильтров тонкой очистки разные цели. Механическая фильтрация, например, позволяет быстро и без удара по карману очистить воду от механических и видимых глазу примесей во всей квартире или даже во всем доме — но с растворенными вредными веществами этот номер не пройдет. Впрочем, обо всем по порядку.

Сорбция

Если механический фильтр — это сито, то сорбционный — это губка, которая впитывает растворенные в воде примеси. По такому же принципу работают противогазы — только загрязнители они извлекают не из жидкости, а из воздуха. Впитывающие материалы называют сорбентами, самый популярный из них — активированный уголь.

Что значит активированный?

Сырье (в случае АКВАФОР это кокосовая скорлупа) превращают в уголь, нагревая без доступа кислорода — этот процесс называется «пиролиз». Полученный уголь обрабатывают водяным паром при температуре около 1000°C. В результате получается очень чистый материал с отличными сорбционными качествами: площадь поверхности составляет около 1000–1500 квадратных метров на 1 грамм угля.

Еще одна небольшая деталь: не любой активированный уголь позволяет хорошо очистить воду. Значение имеет и размер гранул, и его происхождение: березовый, а тем более каменный уголь по качеству не сравнятся с кокосовым. Он лучше активируется, и получаемая площадь поверхности во много раз превосходит все ожидания от угля другого типа.

Современные фильтрующие смеси содержат не только уголь, но и дополнительные сорбенты, которые придают материалам синергетический эффект. В качестве такого элемента АКВАФОР использует микроволокно AКВАЛЕН™: это не только «ловушка» для тяжелых металлов, но и гидрофильный («любящий воду») агент, который позволяет использовать мельчайшие гранулы угля, а значит увеличивать площадь контакта с водой и глубину очистки.

Ионный обмен

В водоочистке это процесс, при котором ионы кальция и магния (солей жесткости, содержание которых определяет мягкость или жесткость воды) замещаются ионами натрия — то есть вода становится мягкой. Как правило, для этого применяют ионообменные смолы. В умягчителях они действуют сами по себе, выполняя свою основную функцию — умягчение, — а в сорбционных фильтрах сочетаются в тех или иных пропорциях с активированным углем и прочими фильтрующими средами.

Одно из главных и весьма полезных свойств ионообменных смол — это способность к регенерации: смолу можно «воскресить» обычной поваренной солью.

Ионообменные материалы (иониты) также для служат для очистки от тяжелых металлов — например, свинца. Но их эффективность в этом не так уж впечатляет, поскольку отсутствует селективность (избирательность): допустим, что на тысячу ионов кальция приходится один ион свинца, и в условиях такого количественного превосходства свинец чаще всего «проскользнет незамеченным». Чтобы исправить возможные недочеты, специалисты АКВАФОР разработали особое ионообменное микроволокно АКВАЛЕНТМ, которое «специализируется» именно на тяжелых металлах.

Человеческий организм не «оборудован» никакими защитными «противометаллическими» механизмами, и, скажем, мышьяк, ртуть и прочие незваные гости там просто накапливаются, приводя к непрогнозируемым последствиям — скорее всего, неприятным.

Полое волокно

Продвинутая технология мембранной очистки, отсеивающая мельчайшие примеси, включая бактерии и цисты (микрофильтрационная мембрана с порами до 0,1 мкм), а в некоторых случаях и вирусы (ультрафильтрационная мембрана с порами до 0,01 мкм, — поскольку вирусы относятся к самым мелким из возможных примесей).

Да, полое волокно это тоже мембрана: в фильтре ее можно расположить и в виде рулона, как в случае обратноосмотической, но для удобства и минимизации занимаемого пространства из нее делают тонкие «ниточки», стенки которых состоят из супермелких полых ячеек, через которые как раз и пытаются вместе с потоком воды пройти загрязнители — впрочем, безуспешно. Это гарантия антибактериальной защиты — исключительно механической, без всяких химических добавок, что особенно актуально для семей с маленькими детьми.

Обратный осмос

Очистка происходит за счет обратноосмотической мембраны, которая разделяет поток на чистую и дренажную воду. Никакие примеси — ни растворенные, ни нерастворенные — она не пропускает, и на сегодняшний день это самый эффективный способ фильтрации.

Перед обратноосмотической мембраной обязательно должны быть установлены предфильтрационные модули, чтобы избежать ее повреждения. А еще вода после очистки обратным осмосом требует минерализации, поскольку полезные минералы удаляются мембраной так же эффективно, как и вредные вещества.

Современные обратноосмотические системы прошли многочисленные этапы технологической «эволюции», стали менее дорогостоящими и занимают меньше места: не всем из них даже требуется отдельный накопительный бак.

Линейка современных обратноосмотических систем АКВАФОР DWM обеспечивает максимально возможную в домашних условиях степень очистки: в сравнении с традиционными системами у них более высокая скорость фильтрации, небольшие габариты и оптимальное соотношение чистой воды и дренажа — его намного меньше, чем в стандартных системах.

Сейчас качество жизни и здоровье напрямую зависят от интеграции технологий в жизнь. Так пусть это будут самые лучшие технологии, которые фундаментально меняют мир к лучшему. Выбирайте себя и своих близких — а АКВАФОР вас в этом поддержит.

Викинг Миди в прочном корпусе из нержавеющей стали

Предфильтр на весь дом для комфортного душа и долгой службы бытовой техники. Обладает высокой грязеемкостью и большим ресурсом.

Предфильтр удобно размещать и обслуживать даже в очень ограниченном пространстве.

Прованс с модулем А5: качественная фильтрация в элегантном исполнении

Особая конструкция сменного модуля позволяет дольше очищать воду от вредных примесей, посторонних привкусов и запахов. Смесь уникальных сорбентов — активированного кокосового угля, ионообменной смолы и запатентованного микроволокна АКВАЛЕН — позволяют максимально эффективно очистить водопроводную воду.

Также она дополнительно обогащается полезным магнием.

Умягчитель на весь дом А800: экономичная защита сантехники и комфортный душ

За счет уникальной конструкции позволяет с наименьшими затратами удалять растворенное железо, марганец и соли жесткости — причину накипи на нагревательных элементах и белых разводов на поверхностях. Ионообменную смолу высочайшего качества легко регенерировать самостоятельно небольшим количеством соли.

Стационарная система ECO Pro: абсолютная защита от бактерий

Инновационные картриджи серии Pro обеспечивают глубокую качественную фильтрацию благодаря уникальным материалам, в том числе ультрафильтрационной мембране, которая обеспечивает антибактериальную защиту без использования каких-либо химических веществ.

DWM-101S: технология обратного осмоса на страже качества жизни

Идеальная экологичная альтернатива бутилированной воде премиум-класса. Удаляет из воды любые примеси, включая бактерии и вирусы. Избавляет от накипи в чайнике, кофемашине и прочей бытовой технике.

Благодаря особой конструкции система занимает в два раза меньше места под раковиной, экономит до 9 тонн воды в год и работает даже при низком давлении в водопроводе.

Влияние хим. элементов на свойства стали.

#ПРОЕКТЫORNAMITA Почему люди ходят в рестораны? Ведь вкусно поесть можно и дома - считают многие, особенно сейчас. Но дело не только в еде, а в атмосфере! Большинство из нас хочет сменить обстановку вокруг, провести время с друзьями и родными и хотя бы на несколько часов перенестись в новый мир с новым интерьером. Делимся с вами нашим очередным реализованным проектом: отделкой стен и потолка нашей сталью #AquaSteel в баре-ресторане Bay Beach Bar @baybeashbar в Италии. Адрес ресторана: via Dimiziana, 405, Mondragone

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

голоса
Рейтинг статьи
Читайте так же:
Моющие пылесосы как выбрать
Ссылка на основную публикацию
Adblock
detector