Montagpena.ru

Строительство и Монтаж
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Удельная проводимость металлов таблица

Электропроводность

Электропрово́дность (электри́ческая проводи́мость, проводимость) — способность тела (среды) проводить электрический ток, свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению [1] .

В Международной системе единиц (СИ) единицей измерения электрической проводимости является сименс (русское обозначение: См; международное: S), определяемый как 1 См = 1 Ом −1 , то есть как электрическая проводимость участка электрической цепи сопротивлением 1 Ом [2] .

Также термин электропроводность (электропроводность среды, вещества) применяется для обозначения удельной электропроводности (см. ниже).

Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток. Ток проводимости практически не зависит от частоты приложенного поля (до определённых пределов, в области низких частот).

Электропроводность среды (вещества) связана со способностью заряженных частиц (электронов, ионов), содержащихся в этой среде, достаточно свободно перемещаться в ней. Величина электропроводности и её механизм зависят от природы (строения) данного вещества, его химического состава, агрегатного состояния, а также от физических условий, прежде всего таких, как температура.

Содержание

Удельная электропроводность [ править | править код ]

Удельной электропроводностью (удельной проводимостью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

  • Электрическая проводимость G однородного проводника длиной
  • L с постоянным поперечным сечением площадью
  • S может быть выражена через удельную проводимость вещества, из которого сделан проводник:
  • В системе СИ удельная электропроводность измеряется в сименсах на метр (См/м) или в Ом −1 ·м −1 . В СГСЭ единицей удельной электропроводности является обратная секунда (с −1 ).

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

при этом векторы плотности тока и напряжённости поля в общем случае не коллинеарны.

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Электропроводность и носители тока [ править | править код ]

Электропроводность всех веществ связана с наличием в них носителей тока (носителей заряда) — подвижных заряженных частиц (электронов, ионов) или квазичастиц (например, дырок в полупроводнике), способных перемещаться в данном веществе на большое расстояние, упрощенно можно сказать, что имеется в виду что такая частица или квазичастица должна быть способна пройти в данном веществе неограниченно большое, по крайней мере макроскопическое, расстояние, хотя в некоторых частных случаях носители могут меняться, рождаясь и уничтожаясь ( говоря в общем , иногда, возможно, и через очень небольшое расстояние), и переносить ток, сменяя друг друга [5] .

Поскольку плотность тока определяется для одного типа носителей формулой:

Отсюда следует, что для электропроводности справедливо выражение:

Гречески читается «сигма»

Механизмы электропроводности и электропроводность различных классов веществ [ править | править код ]

Электропроводность металлов [ править | править код ]

Ещё до открытия электронов было обнаружено, что протекание тока в металлах, в отличие от тока в жидких электролитах, не обусловлено переносом вещества металла. Эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Riecke Carl Viktor Eduard) в 1901 году, состоял в том, что через контакты различных металлов, — двух медных и одного алюминиевого цилиндра с тщательно отшлифованными торцами, поставленными один на другой, в течение года пропускался постоянный электрический ток. Затем исследовался состав материала вблизи контактов. Оказалось, что переноса вещества металла через границу не происходит и вещество по разные стороны границы раздела имеет тот же состав, что и до пропускания тока. Таким образом было показано, что перенос электрического тока осуществляется не атомами и молекулами металлов, а другими частицами. Однако эти опыты не дали ответа на вопрос о природе носителей заряда в металлах [7] .

Читайте так же:
Сип 7 110 кв технические характеристики

Связь с коэффициентом теплопроводности [ править | править код ]

Эта связь основана на том факте, что как электропроводность, так и теплопроводность в металлах обусловлены движением свободных электронов проводимости.

Электропроводность растворов [ править | править код ]

Скорость движения ионов зависит от напряженности электрического поля, температуры, вязкости раствора, радиуса и заряда иона и межъионного взаимодействия.

У растворов сильных электролитов наблюдается характер концентрационной зависимости электрической проводимости объясняется действием двух взаимно противоположных эффектов. С одной стороны, с ростом разбавления уменьшается число ионов в единице объёма раствора. С другой стороны, возрастает их скорость за счет ослабления торможения ионами противоположного знака.

Для растворов слабых электролитов наблюдается характер концентрационной зависимости электрической проводимости можно объяснить тем, что рост разбавления ведёт, с одной стороны, к уменьшению концентрации молекул электролита. В то же время возрастает число ионов за счёт роста степени ионизации.

В отличие от металлов (проводники 1-го рода) электрическая проводимость растворов как слабых, так и сильных электролитов (проводники 2-го рода) при повышении температуры возрастает. Этот факт можно объяснить увеличением подвижности в результате понижения вязкости раствора и ослаблением межъионного взаимодействия

Электрофоретический эффект — возникновение торможения носителей вследствие того, что ионы противоположного знака под действием электрического поля двигаются в направлении, обратном направлению движения рассматриваемого иона

Релаксационный эффект — торможение носителей в связи с тем, что ионы при движении расположены асимметрично по отношению к их ионным атмосферам. Накопление зарядов противоположного знака в пространстве за ионом приводит к торможению его движения.

При больших напряжениях электрического поля скорость движения ионов настолько велика, что ионная атмосфера не успевает образоваться. В результате электрофоретическое и релаксационное торможение не проявляется.

Удельная электропроводность некоторых веществ (таблица) [ править | править код ]

Удельная проводимость приведена при температуре +20 °C [8] :

Удельное сопротивление проводников — меди, алюминия, стали

Одной из физических величин, используемых в электротехнике, является удельное электрическое сопротивление. Рассматривая удельное сопротивление алюминия, следует помнить, что данная величина характеризует способность какого-либо вещества, препятствовать прохождению через него электрического тока.

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов. Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Таблица удельных сопротивлений проводников

Материал проводникаУдельное сопротивление ρ в
Серебро
Медь
Золото
Латунь
Алюминий
Натрий
Иридий
Вольфрам
Цинк
Молибден
Никель
Бронза
Железо
Сталь
Олово
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Титан
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
Фехраль
Висмут
Хромаль
0,015
0,0175
0,023
0,025… 0,108
0,028
0,047
0,0474
0,05
0,054
0,059
0,087
0,095… 0,1
0,1
0,103… 0,137
0,12
0,22
0,42
0,43… 0,51
0,5
0,6
0,94
1,05… 1,4
1,15… 1,35
1,2
1,3… 1,5

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм2. Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Читайте так же:
Оборудование для изготовления натяжных потолков

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм2.

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2.

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

температурный коэффициент сопротивления — это изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Понятия, связанные с удельным сопротивлением

Величина, противоположная удельному сопротивлению, носит наименование удельной проводимости или электропроводности. Обычное электрическое сопротивление свойственно лишь проводнику, а удельное электрическое сопротивление характерно только для того или иного вещества.

Как правило, эта величина рассчитывается для проводника, имеющего однородную структуру. Для определения электрического сопротивления однородных проводников используется формула:

Физический смысл этой величины заключается в определенном сопротивлении однородного проводника с определенной единичной длиной и площадью поперечного сечения. Единицей измерения служит единица системы СИ Ом•м или внесистемная единица Ом•мм2/м. Последняя единица означает, что проводник из однородного вещества, длиной 1 м, имеющий площадь поперечного сечения 1 мм2, будет иметь сопротивление в 1 Ом. Таким образом, удельное сопротивление любого вещества можно вычислить, используя участок электрической цепи, длиной 1 м, поперечное сечение которого будет составлять 1 мм2.

Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов

Раздел недели: Набор прочности бетоном. Время твердения бетона. Тепловыделение цемента (бетонной смеси)

Удельное сопротивление металлов. Таблица

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Читайте так же:
Хороший шуруповерт для дома отзывы

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:
формула удельного сопротевления

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

формула удельной электропроводности

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

аналогия с водопроводной трубой

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

формула сопротивления
где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

расчет сопротивления провода

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

удельное сопротивление металлов таблица

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:

udelnoe-soprotivlenie-metallov-tablica-7
Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:
udelnoe-soprotivlenie-metallov-tablica-8
где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

udelnoe-soprotivlenie-metallov-tablica-9

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Читайте так же:
Рдв регуляторы давления воды

Удельное электрическое сопротивление стали при различных температурах

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м 2 .

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистые стали

Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10 -8 Ом·м.

Удельное электрическое сопротивление углеродистых сталей ρэ·10 8 , Ом·м

Температура, °ССталь 08КПСталь 08Сталь 20Сталь 40Сталь У8Сталь У12
1213,215,9161718,4
201314,216,917,11819,6
5014,715,918,718,919,821,6
10017,81921,922,123,225,2
15021,322,425,425,726,829
20025,226,329,229,630,833,3
25029,530,533,433,935,137,9
30034,135,238,138,739,843
35039,340,243,243,84548,3
40044,845,848,749,350,554
45050,951,854,655,356,560
50057,558,460,161,962,866,5
55064,865,768,268,969,973,4
60072,573,475,876,677,280,2
65080,781,683,784,485,287,8
70089,890,592,593,293,596,4
750100,3101,1105107,9110,5113
800107,3108,1109,4111,1112,9115
850110,4111,1111,8113,1114,8117,6
900112,4113113,6114,9116,4119,6
950114,2114,8115,2116,6117,8121,2
1000116116,5116,7117,9119,1122,6
1050117,5117,9118,1119,3120,4123,8
1100118,9119,3119,4120,7121,4124,9
1150120,3120,7120,7122122,3126
1200121,7122121,9123123,1127,1
1250123123,3122,9124123,8128,2
1300124,1124,4123,9124,6128,7
1350125,2125,3125,1125129,5

Низколегированные стали

Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10 -8 Ом·м при комнатной температуре.

Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Удельное электрическое сопротивление низколегированных сталей ρэ·10 8 , Ом·м

Марка стали2010030050070090011001300
15ХФ28,142,160,683,3
30Х2125,941,763,693,4114,5120,5125,1
12ХН233365267112
12ХН329,667116
20ХН324294666123
30ХН326,831,746,968,198,1114,8120,1124,6
20ХН4Ф36415672102118
18Х2Н4ВА4144587397115
30Г220,825,942,164,594,6114,3120,2125
12МХ24,627,440,659,8
40Х3М33,148,269,596,2
20Х3ФВМ39,854,474,398,2
50С2Г42,94760,178,8105,7119,7124,9128,9
30Н327,1324767,999,2114,9120,4124,8
Читайте так же:
Сварочные аппараты ресанта страна производитель

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10 -8 Ом·м.

При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10 -8 Ом·м.

Удельное электрическое сопротивление высоколегированных сталей ρэ·10 8 , Ом·м

Марка стали2010030050070090011001300
Г1368,375,693,195,2114,7123,8127130,8
Г20Х12Ф72,379,291,2101,5109,2
Г21Х15Т82,495,6104,5112119,2
Х13Н13К1090100,8109,6115,4119,6
Х19Н10К4790,598,6105,2110,8
Р1841,947,262,781,5103,7117,3123,6128,1
ЭХ123136537597119
40Х10С2М (ЭИ107)8691101112122

Хромистые нержавеющие стали

Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10 -8 Ом·м.

Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·10 8 , Ом·м

Марка стали2010030050070090011001300
Х1350,658,476,993,8110,3115119125,3
2Х1358,865,38095,2110,2
3Х1352,259,576,993,5109,9114,6120,9125
4Х1359,164,678,894108

Хромоникелевые аустенитные стали

Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10 -8 Ом·м.

Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·10 8 , Ом·м

Марка стали201003005007009001100
12Х18Н974,389,1100,1109,4114
12Х18Н9Т72,379,291,2101,5109,2
17Х18Н97273,592,5103111,5118,5
Х18Н11Б84,697,6107,8115
Х18Н9В7177,691,6102,6111,1117,1122
4Х14НВ2М (ЭИ69)81,587,5100110117,5
1Х14Н14В2М (ЭИ257)82,495,6104,5112119,2
1х14Н18М3Т89100107,5115
36Х18Н25С2 (ЭЯ3С)98,5105,5110117,5
Х13Н25М2В2103112,1118,1121
Х7Н25 (ЭИ25)109115121127
Х2Н35 (ЭИ36)87,592,5103110116120,5
Н2884,289,199,6107,7114,2118,4122,5

Жаропрочные и жаростойкие стали

По своим электропроводящим свойствам жаропрочные и жаростойкие стали близки к хромоникелевым. Высокое содержание в этих сплавах хрома и никеля не позволяет им проводить электрический ток, подобно обычным углеродистым с высокой концентрацией железа.

Значительное удельное электросопротивление и высокая рабочая температура таких сталей делают возможным их применение в качестве рабочих элементов электрических нагревателей. В частности, сталь 20Х23Н18 по своему сопротивлению и жаростойкости в некоторых случаях способна заменить такой популярный сплав для нагревателей, как нихром Х20Н80.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector