Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Общие технические свойства

общие технические свойства

Отношение материала к постоянному или переменному тепловому воздействию характеризуется его теплопроводностью, теплоемкостью, термической стойкостью, огнестойкостью, огнеупорностью.

Теплопроводность – способность материала проводить через свою толщу тепловой поток, возникающий под влиянием разности температур на поверхностях, ограничивающих материал.

Это свойство характеризуется коэффициентом теплопроводности λ (Вт/ (м* 0 C)), который показывает количество теплоты, проходящее через плоскую стенку толщиной 1 м и площадью 1 м 2 при перепаде температур на противоположных поверхностях в 1 0 C в течение 1 ч.

Теплопроводность зависит от:

• Величины и характера пор материала;

Содержащийся в порах воздух, особенно в замкнутых, является малотеплопроводной средой. Воздух при температуре +20 0 C имеет теплопроводность λ= 0,023 Вт/(м* 0 C), а при температуре +100 0 C — 0,306 Вт/(м* 0 C). С увлажнением теплопроводность материала возрастает, так как теплопроводность воды равна 0,54 Вт/(м* 0 C), т.е. в 25 раз больше, чем воздуха.

Если вода в порах замерзает, то теплопроводность материала еще больше увеличивается, поскольку теплопроводность льда в 4 раза больше, чем воды – 2,1 Вт/(м* 0 C).

В связи с тем, что в крупных и сообщающихся порах усиливается перенос теплоты конвекцией, что повышает суммарную теплопроводность, мелкопористые материалы и материалы с замкнутыми порами обладают меньшей теплопроводностью. Материалы слоистого или волокнистого строения имеют различную теплопроводность в зависимости от направления потока по отношению к волокнам.

Материалы кристаллического строения более теплопроводны, чем материалы того же состава, но аморфного строения.

В справочной литературе приводятся значения λ различных строительных материалов в сухом состоянии при 20 0 C; они используются при тепловых расчетах и для решения практических задач. На практике для ориентировочной оценки теплопроводности материалов используют эмпирическую формулу В.П. Некрасова

где λ – коэффициент теплопроводности материала , Вт/(м* 0 C), d – относительная плотность материала.

Точное значение λ материала определяют экспериментально. Теплопроводность является главным свойством как для большой группы теплоизоляционных материалов, так и для материалов, применяемых для наружных стен и покрытий зданий.

Теплопроводность учитывается при теплотехнических расчетах толщины стен и перекрытий зданий, а также требуемой толщины тепловой изоляции. Она связана с термическим сопротивлением слоя материала R (м* 0 C/Вт), которое определяется по формуле:

где δ – толщина слоя, м.

От значения термического сопротивления зависят толщина наружных стен и расход топлива на отопление зданий.

Теплоемкость характеризует способность материала аккумулировать теплоту при нагревании, причем с повышением теплоемкости больше может выделятся теплоты при охлаждении материала.

Это свойство материала оценивается с помощью удельной теплоемкости, которая показывает количество теплоты, необходимое для нагревания 1 кг материала на 1 0 C. Удельную теплоемкость С кДж/(кг* 0 C) иначе называют коэффициентом теплоемкости и численно определяют из выражения

где Q – количество теплоты, затраченное на нагревание материала, m – масса материала, кг; — разность температур материала до и после нагревания, 0 C.

Коэффициент теплоемкости воды равен 4,2 кДж/(кг* 0 C). Строительные материалы в сухом состоянии имеют более низкие значения этого коэффициента:

• Каменные материалы – 0,75-0,94 кДж/(кг* 0 C);

• Лесные материалы – 2,42-2,75 кДж/(кг* 0 C);

• Сталь – 0,5 кДж/(кг* 0 C).

Читайте так же:
Ролики для конвейерной ленты

С увлажнением материала коэффициенты теплоемкости возрастают, вместе с тем возрастают и значения теплопроводности.

Огнестойкость — свойство материала в конструкции сопротивляться действию огня, высоких температур, воды и ограничивать распространение огня.

Огнестойкость характеризуется пределом огнестойкости – временем (в минутах) от начала теплового воздействия в условиях стандартных испытаний до наступления предельного состояния, зависящего от назначения конструкции.

Предельным состоянием считают чрезмерные деформации конструкции (потеря несущей способности), образование сквозных трещин или отверстий, через которые могут проникать пламя и дым (потеря целостности), высокая температура на необогреваемой поверхности, что может вызвать самопроизвольное воспламенение горючих материалов (потеря изолирующей способности).

В огнестойких конструкциях должны использоваться негорючие материалы (бетон, сталь, керамический кирпич). Но необходимо учитывать, что при пожаре температура достигает 1000 0 C.

При этой температуре некоторые негорючие материалы (гранит) растрескиваются, другие (сталь) сильно деформируются и разрушаются, у третьих (известняк, мрамор, доломит, органические материалы) огонь вызывает химическое разложение, четвертые (алюминий, пластмассы) плавятся.

Строительные материалы по степени огнестойкости подразделяются на три группы:

Несгораемые материалы в условиях пожара не воспламеняются, не тлеют и не обугливаются. К ним относятся керамический кирпич, черепица, бетон, асбестоцементные и природные каменные материалы.

Трудносгораемые материалы под действием огня и высокой температуры с трудом воспламеняются, тлеют и обугливаются, но только при наличии источника огня. (При удалении источника огня горение и тление прекращаются). К этим материалам относят фибролит, стеклопластики, асфальтовый бетон.

Сгораемые материалы под действием огня и высокой температуры воспламеняются, горят или тлеют и продолжают гореть после удаления источника огня. К сгораемым материалам относят древесину, рубероид, пластмассы, полимерные материалы.

Огнеупорность – свойство материала выдерживать длительное воздействие высокой

температуры (от 1580 0 C

Классификация огнеупорных материалов

• Легкоплавкие (температура плавления менее 1350 0 C ) – кирпич керамический строительный;

• Тугоплавкие (выдерживают без оплавления и деформации 1350 — 1580 0 C ) – тугоплавкий печной кирпич ;

• Огнеупорные (применяются для внутренней футеровки промышленных печей, не деформируются и не размягчаются при температуре более 1580 0 C ) – динас, шамот, хромомагнезит, корунд.

Прочность – свойство материалов сопротивляться разрушению из-за возникающих в них внутренних напряжений.

Численной характеристикой этого свойства является предел прочности (временное сопротивление), который в строительном материаловедении обозначается R.

Предел прочности равен напряжению, вызывающему разрушение материала, поэтому для нахождения предела прочности необходимо определить напряжение, при котором материал разрушается.

Например, чтобы определить предел прочности при сжатии бетона, необходимо сначала вычислить площадь грани образца, на которую будет распределена нагрузка, а затем на испытательной машине (прессе) зафиксировать разрушающую нагрузку в кгс или ньютонах.

После этого подсчитывают напряжение, при котором разрушился образец, т.е. предел прочности при сжатии R СЖ

На результат при определении предела прочности материала влияет множество факторов. Например, предел прочности при сжатии малых образцов получается выше, чем образцов большего размера. Влияет на результат испытаний и форма образца. Например, более предпочтительна форма цилиндра по сравнению с формой кубика. С увеличением размеров образца, главным образом его высоты, влияние сил трения снижается, под нагрузкой образец разрушается от поперечного разрушения.

Читайте так же:
Что такое единичное производство

Предел прочности материалов – условная величина, которая зависит от множества причин. Это размеры и конфигурация образцов, их температура и влажность, скорость приложения нагрузки и т.д.

Методы определения прочностных показателей различных материалов подробно прописаны в соответствующих нормативных документах.

Коэффициент конструктивного качества (ККК)

– это характеристика относительной прочности материала, т.е. предел прочности по отношению к плотности.

Чтобы плотность перевести в безразмерную величину, пользуются понятием относительная прочность (т.е. по отношению к плотности воды), МПа:

В строительстве используют различные строительные материалы, выбирая те, у которых высокая величина этого коэффициента, т.е. высокая прочность при малой плотности, например, стеклопластик (225 МПа), древесину (200 МПа), сталь (50-120 МПа), бетон (10-20 МПа), кирпич (5,5 МПа).

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Теплотехнические свойства строительных материалов

Строительные материалы, используемые для ограждающих конструкций, должны быть не только прочными и долговечными, но и обладать надлежащими теплотехническими свойствами, например теплопроводностью, теплоемкостью, огнестойкостью, огнеупорностью, термической стойкостью.

Теплопроводность — способность материала передавать теплоту через свою толщу при наличии разности температур по обе стороны материала. Теплопроводность зависит от вида материала, пористости, характера пор, его влажности и плотности, а также от средней температуры, при которой происходит передача теплоты. Значение теплопроводности характеризуется коэффициентом теплопроводности λ, равным количеству теплоты, проходящей через образец материала толщиной 1 м, площадью 1 м2 за 1 ч при разности температур на противоположных поверхностях образца в 1 ° С, Вт/(м · ° С):
Теплопроводность материала
где Q — количество проходящей теплоты, Дж; а — толщина слоя материала, м; А — площадь, через которую проходит тепловой поток, м ; t 2 — t 1 — разность температур по обеим сторонам слоя материала, ° С; Z — время прохождения теплового потока, ч.

Теплопроводность теплоизоляционных материалов

Теплопроводность некоторых теплоизоляционных материалов

Теплоемкость материалов необходимо учитывать при теплотехнических расчетах ограждающих конструкций, при расчете степени подогрева материалов для зимних бетонных и каменных работ, а также при проектировании печей.

Огнестойкость — способность материалов выдерживать без разрушений одновременное действие высоких температур и воды. Пределом огнестойкости конструкции называется время (в часах) от начала огневого испытания до появления одного из следующих признаков: сквозных трещин, обрушения, повышения температуры на необогреваемой поверхности более чем на 140 ° С в среднем или на 180 ° С в любой точке по сравнению с температурой до испытания. Предел огнестойкости кирпичной стены толщиной в один кирпич равен 5,5 ч; незащищенных стальных колонн — 0,25; балок, ферм, плит, панелей стен из железобетона — 0,5 ч.

По огнестойкости строительные материалы делятся на три группы: несгораемые, трудносгораемые и сгораемые.

Несгораемые материалы (бетон, кирпич, асбестовые материалы) под действием высокой температуры или огня не тлеют и не обугливаются; трудносгораемые материалы (например, арболит, фибролит, асфальтобетон) с трудом воспламеняются, тлеют и обугливаются, но происходит это только при наличии источника огня; сгораемые материалы (дерево, толь, пластмассы) воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня.

Читайте так же:
Рейсмусовый станок рейтинг лучших

Огнеупорность — способность материала противостоять длительному воздействию высоких температур, не деформируясь и не расплавляясь. По степени огнеупорности материалы подразделяются на огнеупорные (например, шамотные изделия) — выдерживающие действие температур от 1580 ° С и выше, тугоплавкие (например, гжельский кирпич), выдерживающие температуру 1360 . 1580 ° С, легкоплавкие (обыкновенный керамический кирпич), выдерживающие температуру ниже 1350 ° С.

Теплофизические свойства строительных материалов

Теплоемкость — свойство материала поглощать при нагревании и отдавать при охлаждении определенное количество теплоты.
Теплоемкость — мера энергии, необходимой для повышения температуры материала.
Теплоемкость, отнесенную к единице массы, называют удельной теплоемкостью С [Дж/(кг • °С)].

Удельная теплоемкость равна количеству теплоты, необходимому для нагревания 1 кг материала на 1 °С. У органических материалов она обычно выше, чем у неорганических [кДж/(кг • °С)]: древесина — 2,38. 2,72; сталь — 0,46, вода — 4,187.
Наибольшую теплоемкость имеет вода, поэтому с повышением влажности материалов их теплоемкость возрастает.

Теплопроводность — свойство материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на противоположных поверхностях. Это свойство имеет важное значение для строительных материалов, применяемых при устройстве ограждающих конструкций (стен, перекрытий, покрытий), и материалов, предназначенных для теплоизоляции.
Теплопроводность материала зависит от его строения, химического состава, пористости и характера пор, от влажности и температуры, при которой проходит передача теплоты.

Теплопроводность характеризуют коэффициентом теплопроводности, показывающим, какое количество теплоты (Дж) способен пропустить материал через 1 м2 поверхности при толщине материала 1 м и разности температур на противоположных поверхностях 1 °С в течение 1 часа.

Коэффициент теплопроводности [Вт/м-°С|:
воздуха — 0,023, древесины вдоль волокон — 0,35 и поперек волокон—0,175, воды — 0,59, керамического кирпича — 0,82, льда — 2,3. Следовательно, воздушные поры в материале резко снижают его теплопроводность, а увлажнение — сильно увеличивает, так как коэффициент теплопроводности воды в 25 раз выше, чем у воздуха.

При замерзании воды в порах материала еще больше увеличивается теплопроводность, так как лед примерно в 4 раза проводнее воды и в сто раз теплопроводное воздуха. Чем меньше пор, т.е. чем плотнее материал, тем он теплопроводнее.
При повышении температуры теплопроводность большинства материалов возрастает.

Тепловое расширение — свойство материала расширятся при нагревании и сжиматься при охлаждении, оно характеризуется изменением линейных размеров, и объема в зависимости от температуры.
В конструкциях, объединяющих несколько материалов, необходимо учитывать ТКЛР каждого; например, в железобетоне хорошо сочетаются сталь и бетон, так как ТКЛР этих материалов почти одинаков.

В результате значительного различия ТКЛР в композиционных материалах возникают напряжения, которые могут привести не только к появлению микротрещин и коробления, но и к разрушению материалов.

Огнестойкость — свойство материала выдерживать без разрушения воздействие высоких температур, пламени и воды в условиях пожара.
Материал в этих условиях либо сгорает, либо растрескивается, сильно деформируется, либо разрушается от потери прочности.
По огнестойкости различают несгораемые, трудносгораемые и сгораемые материалы.

Несгораемые материалы под действием огня или высокой температуры не горят и не обугливаются. Это кирпич, бетон и др.
Между тем, некоторые несгораемые материалы — мрамор, стекло, асбестоцемент — при резком нагревании разрушаются, а стальные конструкции — сильно деформируются и теряют прочность.

Читайте так же:
Пластиковая терка для штукатурки

Трудносгораемые материалы под действием огня или высокой температуры медленно воспламеняются, но после удаления источника огня их горение или тление прекращается. К таким материалам относятся асфальтобетон, фибролит, пропитанная антипиренами древесина.

Сгораемые материалы под действием огня или высокой температуры горят и продолжают гореть после удаления источника огня. Это древесина, обои, битумы, полимеры, бумага и др.
Для повышения огнестойкости материалы пропитывают или обрабатывают огнезащитными составами — антипиренами.
При нагревании они выделяют газы, не поддерживающие горения, или образуют на материале пористый защитный слой, замедляющий нагрев.

Огнестойкость материалов нельзя отождествлять с огнестойкостью конструкций зданий и сооружений, так как конструкции, выполненные, например, из сгораемых материалов, но обработанные антипиренами или защищенные от огня штукатуркой или облицовкой из несгораемых материалов, по своей огнестойкости относятся к трудносгораемым.

Для повышения огнестойкости материалов применяют различные огнезащитные покрытия, в том числе краски. Связующими в таких красках служат жидкое стекло, известь, перхлорвиниловые и карбамидные смолы, фосфорброморганические полимеры. Силикатные и другие огнезащитные краски одновременно защищают материалы от огня и выполняют функцию отделочного покрытия.

Огнеупорность — свойство материала выдерживать длительное воздействие высокой температуры (от 1580 °С и выше), не деформируясь и размягчаясь.
Огнеупорные материалы, применяемые для внутренней футеровки промышленных печей, — динас, шамот, хромомагнезит, корунд — не деформируются и не размягчаются при температуре 1580° и выше.

Тугоплавкие материалы (тугожкий печной кирпич) выдерживают без расплавления темперагуру 1350. 1580 °С, а легкоплавкие (кирпич керамический строительный) — до 1350°С.

Теплофизические свойства строительных материалов

Теплофизические свойства стройматериалов

К ним относят те свойства материалов, что связаны с изменением температуры. В контексте снижения затрат на энергоносители в холодный период года важнейшими для любого владельца дома являются способность строительных материалов передавать (терять), а также аккумулировать и держать тепло.

Теплопроводность строительных материалов

Это способность строительного материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур внутри и снаружи здания. Это свойство имеет важное значение для строительных материалов, применяемых при устройстве ограждающих конструкций (стен, перекрытий, покрытий) и материалов, предназначенных для теплоизоляции.

Теплопроводность стройматериала зависит от его химического состава, структуры, влажности, пористости и характера пор, разности температур на противоположных его поверхностях и средней температуры при которой происходит передача тепла

Показателем теплопроводности служит коэффициент теплопроводности. Этот коэффициент равен количеству тепла, проходящего через образец материала толщиной 1 м, площадью 1 м 2 в течение 1 часа при разности температур образца в 1°С. Чем он больше, тем хуже теплоизоляционная способность материала. Плотные стройматериалы, материалы с крупными порами и с закрытыми порами лучше передают тепло, поэтому для целей теплоизоляции стараются применять мелкопористые материалы и материалы с открытыми порами. Наличие влаги в порах увеличивает теплопроводность в десятки раз.

Коэффициент теплопроводности λ (Вт/мС): воздуха 0,023, древесины вдоль волокон 0,35 и поперек волокон 0,175, воды 0,59, керамического кирпича 0,82, льда 2,3. То есть воздушные поры в материале резко снижаются его теплопроводность, а увлажнение сильно увеличивает, так как коэффициент теплопроводности воды в 25 раз выше, чем у воздуха. При замерзании воды в порах теплопроводность материала увеличивается еще больше, так как лед примерно в 4 раза теплопроводнее воды и в сто раз теплопроводнее воздуха. Результат лучше всего заметен на примере неграмотно утеплённой мансарды. Можно увидеть, что сырая теплоизоляция в морозную погоду практически перестаёт работать.

Читайте так же:
Переходник hdmi на тюльпаны сделать самому

Теплозащитные свойства конкретной конструкции определяются коэффициентом сопротивления теплопередаче, который связывает коэффициент теплопроводности с толщиной (B) стены, перекрытия или слоя теплоизоляции: R = B / λ. Из формулы видно, что чем больше теплопроводность, тем меньше коэффициент сопротивления теплопередаче и, следовательно, хуже теплозащитные свойства ограждающей конструкции.

Удельная теплоёмкость материалов

Равна количеству теплоты, необходимому для нагревания 1 кг материала на 1С. У органических материалов она обычно выше, чем у неорганических (кДж/(кг°С). Для древесины 2,38-2,72, для стали 0,46, для воды 4,187. Видно, что наибольшую теплоёмкость имеет вода, поэтому их теплоёмкость и возрастает с повышением влажности материалов. Кстати, высокая теплоёмкость воды делает её идеальным теплоносителем для системы отопления.

Тепловое расширение

Свойство материалов расширятся при нагревании и сжиматься при охлаждении, что приводит к изменениям линейных размеров и объема. Характеризуется коэффициентом линейного расширения, показывающим, насколько расширяется материал при повышении температуры на 1С.

В конструкциях, объединяющих несколько материалов, коэффициент теплового линейного расширения необходимо всегда учитывать. У стали (11-11,9) и бетона (10-14) он почти одинаков, поэтому эти материалы так хорошо сочетаются в железобетонных конструкциях. Если же коэффициенты линейного расширения отдельных компонентов значительно различаются, в таких конструкциях возникают напряжения, которые могут привести не только к появлению микротрещин и короблению, но и к полному их разрушению.

Аккумулирование тепла

Свойство материала при нагревании поглощать, а при охлаждении отдавать определённое количество теплоты называют теплоаккумулирующей способностью. Зависит она от удельной теплоемкости строительного материала, его средней плотности и толщины стеновой конструкции. Физический смысл теплоаккумулирующей способности (Qs) материала в возможности накопить и удержать в квадратном метре стены заданной толщины некоторое количество тепловой энергии, которая в дальнейшем может определенное время (время остывания ta) расходоваться на поддержание комфортного микроклимата в помещении.

Для более понятного восприятия можно провести аналогию с радиаторами отопления. Чугунные радиаторы благодаря тепловой инерции, то есть большей способности чугуна аккумулировать тепло, при отключении подачи теплоносителя остаются горячими более длительное время, расходуя накопленную энергию на прогрев помещения, чем стальные или алюминиевые.

Время остывания стен зависит от теплоаккумулирующей способности материала и сопротивления теплопередаче ta = Qs R, и чем Qs и R больше, тем более длительный промежуток времени в помещениях дома будет сохраняться приемлемые для жизнедеятельности условия. Полная формула расчёта времени остывания будет выглядеть так: ta = С γ В2 / λ. Где С — удельная теплоёмкость, γ — средняя плотность, λ — коэффициент теплопроводности, B – толщина стены

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector