Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Температура масла винтового компрессора

Статьи

В данном разделе вы можете узнать новости компании “Энергомаш”, ознакомится с детальной информацией о винтовых компрессорах, насосах, дизельных генераторах, системах подготовки сжатого воздуха другого оборудования.

Принцип работы основных узлов винтового компрессора

Винтовой блок винтового воздушного компрессора

Рассмотрим принцип работы основных узлов винтового компрессора на примере работы компрессора Atlas Copco — Ekomak. Винтовой воздушный компрессор Atlas Copco — Ekomak представляет собой комплектный автономный компрессорный агрегат, с приводом от электродвигателя, установленный на раме-основании в комплекте со всеми необходимыми приборами с полностью выполненным электромонтажом и трубной обвязкой.

Основным элементом компрессора является винтовой блок. Винтовой блок состоит из ведущего и ведомого роторов с зубчато-винтовыми лопастями.

Винтовой блок винтового воздушного компрессораВинтовая пара винтового воздушного компрессора

В винтовую пару (винтовой блок) воздух всасывается через входной воздушный фильтр, он проходит сквозь завесу охлаждающего масла и в результате контактного охлаждения температура поступающего воздуха значительно понижается. Сжатый воздух сжимается до расчетного давления на выходе нагнетателя и его выпуска через выпускной фланец. Сжатый воздух поступает в сепаратор, где от него отделяется охлаждающее масло. После чего масло охлаждается и возвращается к входному штуцеру компрессора. Воздух после выхода из сепаратора поступает в концевой охладитель для охлаждения до расчетной температуры на выпуске из компрессора. Конденсат отделяется во влагоотделителе и сливается через дренажную систему. Высококачественный воздух выпускается из агрегата при заданном давлении.

  1. 1. Сепаратор влаги
  2. 2. Линия для откачки;
  3. 3. Обратный клапан минимального давления;
  4. 4. Таймер слива;
  5. 5. Электромагнитный клапан;
  6. 6. Охладитель масла /воздуха;
  7. 7. Сепарирующий элемент;
  8. 8. Блок вентилятора;
  9. 9. Бак отстойника;
  10. 10. Входной клапан для воздуха;
  11. 11. Панель с инструментами;
  12. 12. Винтовой блок компрессора;
  13. 13. Воздушный фильтр;
  14. 14. Звукопоглощающий короб;
  15. 15. Пластина основания;
  16. 16. Электрический двигатель;
  17. 17. Фильтр для жидкости;
  18. 18. Тепловой клапан.

Воздух для охлаждения затягивается в винтовой компрессор вентилятором и прогоняется через охладители. Охлаждая выпускаемый сжатый воздух и пропуская его через сепаратор, удаляется большая часть водяных паров, обычно присутствующих в атмосферном воздухе.

Система охлаждения маслом состоит из отстойника, охладителя масла, клапана-термостата и фильтра. Когда агрегат работает, масло нагнетается под давлением к подшипникам компрессора.

  1. 1. сепаратор влаги;
  2. 2. охладитель масла / воздуха
  3. 3. клапан минимального давления;
  4. 4. бак отстойника;
  5. 5. слив конденсата;
  6. 6. вентилятор;
  7. 7. двигатель вентилятора;
  8. 8. слив масла:
  9. 9. тепловой клапан;
  10. 10. фильтр для жидкости;
  11. 11. воздух;
  12. 12. масло;
  13. 13. масло / воздух.

Система регулирования нагрузки компрессора является автоматической, с включением и отключением компрессора. Винтовой компрессор будет работать и поддерживать установленное для потребителя давление воздуха в расходной линии; на предприятиях с большими колебаниями в потреблении сжатого воздуха используется система автоматического повторного запуска компрессора.

Читайте так же:
Сварка на полуавтоматических машинах

Для индикации рабочих параметров и общего состояния компрессора имеется приборная панель. Все электрические узлы заключены в металлический шкаф с легким доступом к нему.

Безопасность эксплуатации обеспечивается автоматическим остановом компрессора, если произойдет повышение температур выше максимальных значений, при электрической перегрузке, или избыточном давлении в системе.

При полном или частичном копировании материалов на сайте или в публичном издании присутствие ссылки на автора статьи и сайт компании “Энергомаш” необходимо в обязательном порядке.

Смазка компрессоров на R-744


PAO, PAG, POE? Как правильно выбрать смазку для компрессоров каждого типа?

Интервью Жана-Ива Клере и Франсуа Перикат- Exxonmobil

Жан-Ив Клере, Инженер по смазочным материаламФрансуа Перикат, Инженер Промышленных проектов Франция, Испания, Великобритания


Чем смазка компрессоров на CO2 отличается от смазки других компрессоров? Каковы основные проблемы?

Ж.И. Клере: R-744 с потенциалом разрушения озонового слоя (ODP*) 0 и потенциалом глобального потепления (GWP) 1 имеет ряд преимуществ, среди которых более высокая теплота парообразования, низкий удельный объем, нетоксичность и негорючесть. Однако его применение требует знаний и умений для решения множества технических проблем, среди которых высокая растворимость в смазочных материалах и очень высокая растворяющая способность CO2 в форме жидкости и пара.

Какие типы смазок вы рекомендуете?
При производстве холода путем компрессии используется хорошо известный принцип испарения, перехода хладагента из жидкого в газообразное состояние, в ходе которого поглощается значительное количество тепла, т.е. «производится холод». Этот принцип лежит в основе разнообразных промышленных установок с CO2 — каскадных систем, сухих и влажных испарителей, бустеров, установок с суб- и транскритическими режимами хладагента и т.д. Именно хладагент и конструкция установки определяют тип смазочного материала: там, где требуется идеальная смешиваемость с CO2 используются POE (полиолэфиры), в противном случае выбирают смазку на основе PAO (полиальфаолефинов) или PAG (полиалкиленгликолей), см. рис. 1.Эти три типа смазок — POE, PAO и PAG — используются с R-744. Поскольку масло играет огромную роль в правильной работе установки, важно понимать, как смазываются компрессоры каждого типа.

Не могли бы вы кратко объяснить принципы смазки компрессоров каждого типа?

Существуют два типа компрессоров CO2 — поршневые и винтовые.

Общие требования, предъявляемые к смазке подшипников холодильных поршневых компрессоров сходны с требованиями для других компрессоров: в небольших агрегатах смазка кривошипно-шатунных механизмов и цилиндров выполняется разбрызгиванием, а в больших циркуляцию смазки обеспечивает масляный насос. Следует понимать, что независимо от назначения и смешиваемости или нет, элементы компрессора смазываются смесью масла и CO2. Растворимость хладагента в масле зависит с одной стороны от свойств пары хладагент/смазка, а с другой — от давления: чем оно выше, тем выше растворимость, а чем выше растворимость, тем ниже вязкость. Это правило применимо к CO2, POE, PAO и PAG.

Читайте так же:
Метал титан все о нем

Масляная пленка на стенках цилиндров поршневого холодильного компрессора подвергается низким температурам на всасывании (например, -42°C при давлении всасывания 9,3 бар абс.) и более высоким температурам на выпуске (50-75 °C в зависимости от режима эксплуатации).

Поскольку с повышением температуры вязкость снижается, она будет намного выше на всасывании, чем на выпуске. Здесь мы сталкиваемся с двумя противоположными эффектами: вязкость масла не должна быть слишком высокой, чтобы оно быстро распространялось, образуя тонкую пленку на всех смазываемых поверхностях, но она должна быть достаточно высокой, чтобы, несмотря на растворимость CO2, смазка обеспечивала адекватную защиту от износа. Также, необходимо учитывать вынос масла хладагентом за пределы компрессора, и здесь смешиваемость будет иметь очень большое значение, о чем будет объяснено ниже.

В поршневом компрессоре CO2, когда он остановлен, температура масла поддерживается при помощи электрического сопротивления в картере, чтобы облегчить удаление CO2 из масла и обеспечить его более высокую вязкость при возобновлении работы. Это позволяет избежать выделения газа и «сдувания» масляной пленки при запуске компрессора.

На масло в картере действует давление всасывания (низкое). Поэтому при оценке остаточной вязкости смазки с помощью кривых вязкости, давления и температуры, необходимо учитывать растворимость CO2 при температуре в картере и давлении всасывания. На практике минимальная вязкость для правильной смазки поршневого компрессора: 30 сантистоксов для коленчатого вала,7 сантистоксов для контактных зон стенок цилиндров и поршневых колец. Поэтому, чтобы получить минимальную вязкость, необходимую для хорошей смазки компонентов поршневого компрессора с учетом растворимости CO2, требуется вязкость от 46 до 100 сантистоксов при 40°С.

А для винтовых компрессоров?

Ж.И. Клере: Смазываемые, или «мокрые» винтовые компрессоры также используются в установках CO2. В них масло смазывает подшипники и контактные поверхности винтовых валов с выпуклым и вогнутым профилями. Смазка обеспечивает уплотнение между винтовыми валами, охлаждение сжатых газов, а также гидравлическое регулирование. Важно отметить, что в винтовых компрессорах давление непрерывно растет вдоль всего профиля винтового вала. В результате растворимость CO2 в смазке максимальна при давлении и температуре на выходе компрессора, что приводит к значительному падению вязкости. Вязкость смазки для винтовых компрессоров должна быть выше, чем для поршневых компрессоров: обычно она составляет от 68 до 220 сантистоксов при 40°C, чтобы компенсировать падение вязкости.

Читайте так же:
Паяльник для автомобиля на 12 вольт

Существуют ли проблемы, характерные для смазки обоих типов компрессоров?

Да, существуют. Растворимость CO2 максимальна в масле на выходе из сепаратора. Целесообразно предусмотреть систему нагрева или очистки масла на выходе из сепаратора, чтобы максимально удалить растворенный в масле CO2 до того, как возвращать масло в картер компрессора под низким давлением. Если не удалять растворенный CO2, выделение очень большого количества газа может вызвать сильное вспенивание масла и нарушение смазки. Это крайне негативно влияет на смазывающую способность масла. Кроме того, незначительное изменение давления или температуры на всасывании может вызвать образование тумана CO2. Присутствие мельчайших капель жидкого CO2 может привести к смыванию масляной пленки, что очень вредно в зонах контакта поршневых колец и стенок цилиндров или подшипников и кривошипов. Испарение тумана также может приводить к «сдуванию» масляной пленки. Исчезновение масляной пленки и значительный контакт металл/металл, например, между поршневыми кольцами и стенками цилиндров, может привести к заклиниванию и поломке компрессора. Чтобы избежать конденсации CO2, проектировщики и установщики рекомендуют перегрев на 10-15 °К (-263. -258 °C) для газообразного CO2 на впуске в компрессор.

Рисунок 1: ориентировочная таблица смешиваемости смазок разных типов с CO2

Достоинства и недостатки масел POE, PAO и PAG

POE: высокая чистота, химическая стабильность, устойчивость к тепловым нагрузкам и очень высоким температурам (+ 210°C), смешиваемость с CO2, низкая летучесть. Недостаток: гигроскопичность.Типичные применения с CO2: со смешиваемостью.

PAO: устойчивость к гидролизу, высокая чистота, повышенная устойчивость к тепловому стрессу в диапазоне температур от -45 до +175 °C, очень низкая холодная вязкость, низкая летучесть, отличная защита от износа.Типичные применения с CO2: без смешиваемости.

PAG: высокая чистота, отличная смазывающая способность, стойкость к нагреву и тепловым нагрузкам, способность выдерживать постоянную температуру до 210°C. Недостатки: большая гигроскопичность, чем у POE, несовместимость с некоторыми уплотнениями и красками, как правило, несовместимость с минеральными маслами и PAO ввиду несмешиваемости с ними.

Типичные применения с CO2: без смешиваемости.

ExxonMobil и Mobil являются зарегистрированными товарными знаками, принадлежащими Exxon Mobil Corporation или одной из ее дочерних компаний, включая Esso SAF продающей продукцию во Франции.

Esso SAF Акционерное общество с капиталом 98 667 521,70 евро, RCS Nanterre 542 010 053 5/6 Place de l’iris 92400 Courbevoie.

Читайте так же:
Порядок проводов при обжимке интернет кабеля

Термостат в винтовом компрессоре

Про существования такого элемента, как термостат, в конструкции винтового компрессора обслуживающий персонал на предприятиях узнает когда компрессор начинает аномально “греться” вплоть до аварийной остановки. Назначение же термостата — поддержание оптимального температурного режима работы компрессора.

Alup, Almig, Allegro, AirPress, Ceccato, Mark, Boge, Dalgakiran, Walter, Creemers, Wan, Remeza (Ремеза), Renner, Rotorcomp, Kaeser, Balma, Abac, Fiac, Fini, Atmos, Gudepol, AirPol, Gardner Denver, CompAir, Babatz, Atlas Copco, Bottarini, Ekomak, Ozen, Vortex, RotAir, Worthington, VMC, SCR, JuFeng, AirHourse, Rotorcomp, а также Витер, ВВ, ВВУ, НВЭ, ВВПЭ, УКВШ, Comprag

аварийная остановка по температуре

термоста на немецкий компрессор

термостат на китайский компрессор

термосиловой элемент

холодный радиатор

термостат компрессора

перегрев компрессора

высокая температура

  • термостат винтового роторного шнекового воздушного компрессора
  • термостат компрессора
  • Термостат компрессора

Существует две крайности: рабочая температура либо низкая (актуально для прохладного времени года), либо высокая (круглый год). Если температура нагнетания “низкая” (ниже точки росы), то в маслобаке будет накапливаться конденсат (вода в жидкой фракции) и циркулировать вместе с маслом по системе:

  • через масляный фильтр, тем самым ухудшая его пропускную способность;
  • на подшипники винтовой пары, снижая их срок службы;
  • через фильтр сепаратор, тем самым забивая его. В большинстве компрессоров отсутствует датчик давления в маслобаке (для экономии стоимости компрессора) и “увидеть” проблему помогает предохранительный клапан — он срабатывает.

Модельный ряд поставляемых термостатов , а также других запчастей

Также, низкая рабочая температура сказывается и на качестве отделения масла в фильтре сепараторе; бросает масло в систему. Не стоит забывать, что вязкость масла зависит от температуры (чем холоднее, тем более тягучее оно).

Если температура нагнетания будет высокой (более 90 0 С) то также имеет негативные последствия для компрессора. А именно:

  • снижает срок службы масла (при рабочей температуре свыше 85 0 С рекомендуется уменьшать срок эксплуатации масла — рекомендации из инструкции на компрессор Alup)
  • снижает срок службы подшипников в винтовом блоке (максимальная допустимая температура эксплуатации подшипников не более 110 0 С);
  • снижает срок службы радиатора (максимальная рабочая температура радиатора 110 0 С), что приводит к тече масляного контура;
  • повышает вероятность выхода из строя сальника (торцевого уплотнения вала блока);
  • выход из строя рукавов высокого давления (шлангов).

Оптимальная температура работы компрессора, неважно кто производитель/сборщик, находиться в пределах 65 — 85 0 С (для работы при давлении близком к 15 бар — составляет 95 0 С).

3.9. Поддержание теплового режима работы винтового агрегата

Винтовые компрессорные агрегаты предназначены для эксплуатации при температуре окружающей среды 15…40 °С, относительной влажности воздуха до 80 % и температуре охлаждающей воды до 32 °С.

Читайте так же:
Назовите формы поперечного сечения напильника

Температурный режим агрегатов с винтовыми компрессорами в значительной степени зависит от количества циркулирующего в его системе масла, температура которого перед пуском в работу должна быть не ниже 15 °С. Для подогрева масла используют электронагреватели, которые устанавливают в маслосборнике.

Масло можно подогреть циркуляцией его в системе агрегата.

В процессе работы винтового компрессорного агрегата масло отводит теплоту сжатия хладагента в компрессоре и передает ее воде, циркулирующей в маслоохладителе. Температура масла, поступающего в компрессор, должна быть в пределах 25…45°С. Для защиты агрегата от превышения температуры масла применяют термореле, отключающее компрессор при достижении маслом температуры (60 + 5) °С. Температура нагрева масла зависит от температуры и расхода воды, проходящей через маслоохладитель. Изменением расхода воды можно регулировать температуру масла после маслоохладителя.

Температура нагнетания компрессора не должна превышать 85 °С. Она, как правило, зависит от количества и температуры масла, проходящего через компрессор. Термореле, контролирующее температуру нагнетания, отключает компрессор при температуре (100±5) °С.

Регулирование режима работы агрегата производится за счет изменения расхода воды в маслоохладителе и расхода масла в компрессоре.

В некоторых схемах применяются водорегулирующие вентили, с помощью которых устанавливается определенный расход воды через маслоохладитель.

Расход масла в компрессоре регулируют дросселирующим клапаном (см. рис. 28).

Рассмотренные параметры предусматривают нормальное заполнение хладагентом испарительной системы. Об этом свидетельствует разность температур всасывания и кипения хладагента в пределах 5…15°С.

При большем перегреве пара на всасывании компрессора увеличивается и температура нагнетания, если расход масла через компрессор не меняется.

При меньшем перегреве пара или его отсутствии компрессор начинает работать в режиме «влажного хода». Этот режим менее опасен для винтовых компрессоров, чем для поршневых, но также крайне нежелателен, так как при попадании в парную полость большого количества жидкого хладагента возможно заклинивание роторов и разрушение подшипников.

В случае если винтовые компрессорные агрегаты эксплуатируются с охлаждением масла жидким аммиаком, это приводит к увеличению его вязкости, что существенно увеличивает силы трения. При этом возрастает нагрузка на электродвигатель и повышается уровень шума компрессора. Увеличение вязкости масла приводит к задиру рабочих поверхностей винтов.

В хладоновом агрегате при работе во «влажном ходе» не происходит увеличения вязкости масла, однако вспенивание маслохладонового раствора в маслосборнике приводит к срыву масляного насоса.

При установке звукоизолирующих кожухов температура выходящего из кожуха воздуха не должна превышать 45 °С.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector