Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Аргонная сварка неплавящимся электродом

Аргонная сварка неплавящимся электродом

Аргон практически химически не взаимодействует с расплавленным металлом и другими газами, которые есть в зоне горения дуги. Аргон на 38% тяжелее воздуха, поэтому аргон вытесняет его из зоны сваривания, а также надежно изолирует сварочную ванну от контакта с атмосферой.

При аргонодуговом сваривании возможен крупнокапельный или же струнный перенос металла электрода. Процесс сваривания при крупнокапельном сваривании неустойчив и имеет большое разбрызгивание. Технологические характеристики такого металла немного хуже, чем от сваривания полуавтоматической сваркой. Вследствие меньшего давления капли металла увеличиваются.

Технология сваривания аргонодуговой сварки неплавящимися электродами состоит в том, что сварочный электрод расположен в горелке. Через сопло в ней вдувается защитный газ. Обычно неплавящийся электрод сделан из вольфрама. Присадочный материал подается в зону дуги со стороны, а в электрическую цепь он не включается.

Зажигание сварочной дуги, в отличие от сварки обычными плавящимися электродами не может выполняться путем касания сварочного электрода к поверхности свариваемого металла. Это происходит по нескольким причинам, например, аргон имеет высокий потенциал ионизации, а также касание свариваемого изделия приводит к загрязнению и оплавлению металла. По этим причинам при сваривании аргоном с использованием неплавящихся электродов нужно использовать дополнительное устройство, которое необходимо для сварки и называется «осциллятор».

Осциллятор для зажигания сварочной дуги позволяет подавать на сварочный электрод высокочастотные импульсы, которые позволяют обеспечить зажигание дуги после включения сварочного тока. Если сваривание аргоном производят на с использованием переменного тока, осциллятор после зажигания дуги переходит в режим стабилизатора, подавая импульсы на момент смены полярности. Это позволяет предотвратить деионизацию промежутка дуги, что помогает сделать горение дуги более устойчивым.

При проведении сварочных работ на постоянном токе, анод и катод выделяет разное количество тепла. По этой причине практически всегда используется прямая полярность для того чтобы максимально проплавить изделие и минимально разогреть сварочный электрод. Алюминий обычно сваривается не на прямой полярности, а при его сваривании используется переменный ток, который позволяет лучше разрушать оксидную пленку.

Для того чтобы улучшить сваривание и сделать борьбу с пористостью металла более действенно, к аргону добавляется кислород в количестве 3 – 5%. В таком случае защита металла становится более активной и имеет большую силу. Кислород, в отличие от аргона, вступает в химические реакции с различными соединениями и обеспечивает их полное выгорание, превращая их в соединения, которые в дальнейшем всплывают на поверхность сварочной ванны. Потом такие соединения легко удаляются, что позволяет предотвратить пористость металла.

Технология ручной аргонодуговой сварки неплавящимся электродом

Введите свои контактные данные, выберите одну или несколько заявок для прохождения аттестации, и наш специалист свяжется с вами в ближайшее время.

Задать вопрос

Есть вопросы по аттестации?
Оставляйте заявку на вопрос, и наш специалист ответит в ближайшее время.

664075, город Иркутск, улица Байкальская, дом 202/12

ООО «Головной аттестационный центр Восточно-Сибирского региона» выполняет аттестацию технологий сварки в соответствии с требованиями РД-03-615-03 «Порядок применения сварочных технологий при изготовлении, монтаже, ремонте и реконструкции технических устройств для опасных производственных объектов» (Шифр аттестационного центра в Реестре САСв — АЦСТ-100)

Область деятельности АЦСТ-100:

Виды аттестации технологий: Исследовательская, производственная (первичная, периодическая, внеочередная).

Группы технических устройств опасных производственных объектов:

ПТО — подъемно-транспортное оборудование;

КО — котельное оборудование;

ГО — газовое оборудование;

НГДО — нефтегазодобывающее оборудование;

МО — металлургическое оборудование;

ГДО — горнодобывающее оборудование;

ОХНВП — оборудование химических, нефтехимических, нефтеперерабатывающих и взрывопожароопасных производств;

Читайте так же:
Редуктор для газового баллона кислород

ОТОГ — оборудование для транспортировки опасных грузов;

СК — строительные конструкции;

КСМ — конструкции стальных мостов.

Способы сварки (наплавки):

ААД — автоматическая аргонодуговая сварка неплавящимся электродом;

ААДН — автоматическая аргонодуговая наплавка неплавящимся электродом;

АПГ — автоматическая сварка плавящимся электродом в среде активных газов и смесях;

АПС — автоматическая сварка самозащитной порошковой проволокой;

АФ — автоматическая сварка под флюсом;

АФПН — автоматическая наплавка проволочным электродом под флюсом;

Г — газовая сварка;

ЗН — сварка с закладными нагревателями;

МАДП — механизированная аргонодуговая сварка плавящимся электродом;

МП — механизированная сварка плавящимся электродом в среде активных газов и смесях;

МПГ — механизированная сварка порошковой проволокой в среде активных газов и смесях;

МПС — механизированная сварка самозащитной порошковой проволокой;

МСОД — механизированная сварка открытой дугой легированной проволокой;

МФ — механизированная сварка под флюсом;

НГ — сварка нагретым газом;

НИ — сварка нагретым инструментом;

РАД — ручная аргонодуговая сварка неплавящимся электродом;

РАДН — ручная аргонодуговая наплавка;

РД — ручная дуговая сварка покрытыми электродами;

РДН — ручная дуговая наплавка покрытыми электродами;

Э — экструзионная сварка;

ЭШ — электрошлаковая сварка.

Аттестации подлежат технологии выполнения сварки и наплавки, используемые при изготовлении, строительстве, монтаже, ремонте и реконструкции технических устройств, оборудования и сооружений опасных производственных объектов. Производственную аттестацию технологии сварки и наплавки осуществляют с целью подтверждения того, что организация обладает техническими, организационными возможностями и квалифицированными кадрами для производства сварки (наплавки) по аттестованным технологиям, а также проверки того, что сварные соединения (наплавки), выполненные в условиях конкретного производства по аттестуемой технологии, обеспечивают соответствие требованиям к опасным производственным объектам общих и специальных технических регламентов, а до их вступления в силу — нормативных документов, утвержденных или согласованных Ростехнадзором, конструкторской (в части требований к сварке и контролю качества) и технологической документации.

Аргонодуговая сварка неплавящимися электродами

Сварка аргонодуговая

Аргонодуговая сварка — это современная технология, которая не только позволяет повысить качество выполняемого соединения металлов, но и существенно упрощает работу с такими тугоплавкими металлами, как титан, медь и алюминий. Поговорим подробнее, что такое аргонная сварка, расскажем о ее преимуществах и недостатках.

Описание технологии

Проведение сварки

Особенностью данной технологии является то, что сварка происходит в среде защитного инертного газа аргона. Это позволяет повысить качество соединения металлов и обеспечивает максимально возможную защиту от окисления. Аргон подается к горелке под высоким давлением и, полностью перекрывая рабочую зону, не позволяет кислороду проникать в соединяемые металлы, предотвращая появление ржавчины.

Если ранее эта технология была доступны лишь профессионалам, то сегодня с появлением относительно простых и универсальных в использовании сварочных аппаратов, выполнять такую работу может каждый.

В зависимости от характеристик соединяемых металлов и оборудования используются два типа электродов: неплавящиеся и плавящиеся.

Из неплавящихся наибольшее распространение получила технология с применением вольфрамовой проволоки, что позволяет получать прочные соединения двух разнородных металлов. А вот плавящиеся электроды могут использоваться при ручной и полуавтоматической сварке, когда соединяются одинаковые или близкие по характеристикам тугоплавкости металлы.

Принцип работы сварочного оборудования

Сварочное оборудование состоит из следующих элементов:

Правила сварки

  • самого сварочного аппарата, у которого напряжение холостого хода составляет не менее 60 вольт;
  • осциллятора, который повышает сетевое напряжение до уровня в 6 000 вольт;
  • силового контрактора, отвечающего за подачу напряжения от сварочного аппарата на горелку;
  • керамической горелки;
  • устройства для обдува сварочной зоны;
  • баллона с аргоном или другим инертным газом;
  • присадочной проволоки и неплавящихся электродов.
Читайте так же:
Принцип измерения сопротивления изоляции

Ручная аргонодуговая сварка не представляет особой сложности. Выполняется очистка и подготовка соединяемых металлов, осуществляется настройка и выбор режима работы. Далее сварщик зажигает горелку, после чего начинается подача газа к непосредственному участку сварки. Газовой горелкой расплавляют соединяемые элементы и аккуратно падают в зону соединения электрод или же сварочную проволоку. Единственный нюанс состоит в том, что отключать подачу защитного газа следует приблизительно через 10−15 секунд после выключения горелки.

Классификация режимов аргонодуговой сварки

Приведенная ниже классификация режимов аргонодуговой сварки позволит правильно подобрать электроды и оборудование.

  • Автоматическая, с использованием неплавящихся электродов ААД.
  • РАД сварка электродами с маркировкой для ручной работы.
  • Дугово-аргоновая автоматическая, с применением плавящихся электродов ААДП.

Как правильно выбрать режим

Как проводится сварка

Именно от правильности выбора толщины электрода и силы тока зависит качество выполненных вами работ. Помните: чем толще соединяемый металл, тем больше диаметр должен быть у используемых вольфрамовых электродов, соответственно, тем выше сила тока. В инструкции по эксплуатации, которая прилагается к аппарату, вы можете найти все данные по силе тока и диаметру электродов в зависимости от толщины соединяемых деталей.

Наибольшей популярностью сегодня пользуются ААД и РАД сварка. А вот профессионалы, которым нужно выполнять большой объем работ, используют мощные полностью автоматические установки.

Рекомендации

Инверторный аппарат аргонодуговой сварки

При длинной сварочной дуге образуется широкий шов с небольшой глубиной провара. Это может привести к ухудшению выполненного соединения. В этом случае рекомендуется держать используемый неплавящийся электрод как можно ближе к стыкам свариваемых деталей.

Для выполнения глубоких и узких швов следует выдерживать продольное движение горелки и электрода. При этом поперечных движений следует избегать.

Неплавящийся электрод и присадочная проволока должны находиться в зоне сварки и полностью прикрываться аргоном. Это защитит сварной шов от воздействия азота и кислорода.

Подача присадочной проволоки выполняется равномерно и плавно, так как быстрая и резкая подача проволоки приведет к разбрызгиванию металла, отчего пострадает качество шва.

Наличие у сварного шва выпуклой или округлой формы свидетельствует о том, что соединение выполнено не должным образом. Проплавлением поверхности в этом случае не обойтись.

Присадочную проволоку следует подавать перед горелкой, при этом держать ее под небольшим углом, что позволит обеспечить минимальную ширину сварочного шва и отличное проплавление металла.

Прекращать подачу инертного газа сразу же после завершения сварки не рекомендуется, так как может пострадать антикоррозийная защита соединения.

Стыки соединяемых деталей следует перед началом работ обезжирить и зачистить.

Преимущества и недостатки этой технологии

К преимуществам РАД технологии можно отнести следующее:

Какие недостатки у технологии

  • Аргон обеспечивает качественную защиту шва от окисления.
  • Вся работа выполняется при относительно невысокой температуре, поэтому свариваемые изделия сохраняют свою форму и размеры.
  • Тепловая мощность дуги находится на высоком уровне, что позволяет существенно сократить время работы.
  • Сама процедура несложная, поэтому обучиться ей может каждый.
  • Есть возможность соединения различных по своим характеристикам металлов.

Технология ручной аргонодуговой сварки неплавящимся электродом

Глава VII
ТЕХНИКА И ТЕХНОЛОГИЯ РУЧНОЙ АРГОНОДУГОВОЙ СВАРКИ НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ

§ 39. Сущность процесса и область применения

Сущность аргонодуговой сварки состоит в том, что сварочная ванна защищается от воздействия азота и кислорода воздуха инертным газом аргоном, не вступающим ни в какие реакции с расплавленным металлом сварочной ванны (вместо аргона может применяться и гелий). Схема горения сварочной дуги в инертных газах представлена на рис. 46. Аргонодуговая сварка подразделяется на ручную, механизированную и автоматическую. Сварка в аргоне и гелии выполняется как плавящимся, так и неплавящимся (вольфрамовым) электродом.
Аргонодуговую сварку применяют для соединения легированных сталей, цветных металлов и их сплавов, ее выполняют постоянным (рис. 47) и переменным (рис. 48) током плавящимся и неплавящимся электродами. Упрощенная схема поста механизированной сварки приведена на рис. 49.

Читайте так же:
Проверка емкости аккумулятора мультиметром

Сущность процесса и область применения
Рис. 46. Схема горения дуги в инертных газах:
1 — электрод, 2 — присадочная проволока, 3 — изделие, 4 — сварной шов, 5 — дуга, 6 — поток защитного газа, 7 — горелки, 8 — воздух
Сущность процесса и область применения
Рис. 47. Упрощенная схема ручной аргонодуговой сварки постоянным током:
1 — горелка, 2 — баллон с защитным газом, 3 — реостат, 4 — генератор, 5 — сварной шов
Сущность процесса и область применения
Рис. 48. Упрощенная схема ручной аргонодуговой сварки переменным током:
1 — баллон с защитным газом, 2 — горелка, 3 — сварной шов, 4 — осциллятор, 5 — трансформатор с регулятором
Сущность процесса и область применения
Рис. 49. Схема поста механизированной сварки плавящимся электродом:
1 — балластный реостат, 2 — контактор, 3 — горелка, 4 — подающий механизм, 5 — ротометр (расходомер газов), 6 — редуктор, 7 — баллон для газа; Г — сварочный генератор, А — амперметр, V — вольтметр, Ш — шунт

Ручная аргонодуговая сварка выполняется следующим образом: в специальную сварочную горелку подводится инертный газ и сварочный ток, другая фаза сварочного тока подсоединяется к изделию. В этой горелке установлен вольфрамовый электрод, который в процессе сварки не плавится. Дуга горит между вольфрамовым электродом и изделием, а присадочная проволока подается в зону сварочной дуги. При ручной аргонодуговой сварке конец вольфрамового электрода затачивают на конус. Длина заточки, как правило, должна быть равна двум-трем диаметрам электрода.
Дуга зажигается на специальной угольной пластине. Зажигание дуги на основном металле не рекомендуется из-за загрязнения и оплавления конца электрода. Для возбуждения дуги можно применить источник питания с повышенным напряжением холостого хода или дополнительный источник питания с высоким напряжением (осциллятор), так как потенциал возбуждения и ионизации инертных газов значительно выше, чем кислорода, азота или паров металлов. Дуговой разряд инертных газов отличается высокой стабильностью.
Характерной особенностью аргонодуговой сварки неплавящимся вольфрамовым электродом при использовании переменного тока является возникновение в сварочной цепи составляющей постоянного тока, величина которой может достигать 50% от величины эффективного значения переменного тока сварочной цепи. Выпрямление тока зависит от размеров и формы вольфрамового электрода, материала изделия и режимов сварки (величины тока, скорости сварки и длины дуги).
При чрезмерной величине составляющей постоянного тока нарушается стабильность горения дуги, резко ухудшается качество поверхности наплавляемого металла, появляются подрезы, чешуйчатость и снижается прочность сварных соединений и пластичность металла шва. Особенно отрицательно появление в сварочной цепи составляющей постоянного тока сказывается на процессе сварки и качестве сварных соединений из алюминия и его сплавов. Устранение составляющей постоянного тока в сварочной цепи переменного тока является первостепенным условием для получения качественных сварных соединений.
Гелиедуговая сварка аналогична аргонодуговой и поэтому отдельно не рассматривается.
В отличие от ручной дуговой сварки качественными электродами, где необходимо давать три движения электроду (вдоль оси электрода, поперек шва и вдоль оси будущего шва), при ручной аргонодуговой сварке следует давать только одно движение — вдоль оси будущего шва (это правило относится и к механизированным способам сварки). Два других движения не используются при ручной аргонодуговой сварке по следующим причинам: движение вниз по оси электрода исключено потому, что при аргонодуговой сварке электрод не плавится; движение поперек шва не выполняется, чтобы не нарушать защиту расплавленного металла аргоном.
Вследствие исключения колебательного движения электрода поперек шва сварные швы при ручной аргонодуговой сварке образуются значительно уже, чем при ручной дуговой сварке качественными электродами.
После прихватки стык освобождается от приспособления и выполняется первый слой шва с применением присадочной проволоки, марка которой устанавливается либо технологическим процессом, либо техническими условиями. Дуга зажигается не на изделии, а на угольной пластине, гасить дугу лучше дистанционно.
С целью исключения насыщения металла шва кислородом или азотом воздуха конец расплавляемой сварочной проволоки и нагретый конец вольфрамового электрода должны всегда находиться в зоне защитного газа. Для исключения разбрызгивания расплавленного металла конец проволоки необходимо подавать в жидкую ванну плавно. При наложении корневого слоя шва необходимо тщательно следить за полным проплавлением кромок и отсутствием непровара. Степень проплавления можно определить по форме ванны расплавленного металла: хорошему проплавлению соответствует ванна, вытянутая в сторону направления сварки, а недостаточному проплавлению – круглая или овальная. При выполнении сварочных работ вне цеховых условий необходимо стремиться к защите места сварки от атмосферных осадков и ветра.
В институте электросварки им. Е.О. Патона разработан способ сварки плавящимся подогреваемым электродом (рис. 50). Сущность этого способа состоит в том, что сварка осуществляется электродной проволокой, которая подогревается в горелке до 800-1200°С (подогрев осуществляется от отдельного низковольтного трансформатора). Сварочными материалами могут служить обычно применяемые проволоки и защитные газы. Этим способом сварки сваривают стыковые и угловые соединения (при толщине металла до 12 мм не требуется разделка кромок). Сварка ведется на медной подкладке с формирующей канавкой проволоками диаметром 2-5 мм, со струйным переносом электродного металла короткой дугой с обязательным зазором 3-4 мм. Механические свойства сварных соединений такие же, как и при сварке без подогрева проволоки. Можно применять подогрев проволоки и при наплавочных работах.

Читайте так же:
Ремонт мебельного степлера своими руками видео

Сущность процесса и область применения
Рис. 50. Схема сварки плавящимся подогреваемым электродом:
1 — баллон с защитным газом, 2 — источник подогрева, 3 — сварочный источник

Разработанный процесс сварки характеризуется высокой стабильностью, меньшим разбрызгиванием, снижением сварочного тока до 30%, повышением производительности сварки в 1,5-2 раза по сравнению с обычной аргонодуговой сваркой. Этот способ сварки плавящимся подогреваемым электродом может применяться в различных отраслях машиностроения с целью повышения производительности и улучшения качества сварочных работ.
Гелий и аргон являются инертными газами и не образуют с другими элементами химических соединений, за исключением некоторых гидридов, устойчивых только в узких пределах температуры и давления. Эти газы в большинстве металлов практически нерастворимы. В промышленности гелий получают из природных газов, природный газ предварительно очищают от окиси и двуокиси углерода, подвергают сушке и сжижают. Метан и другие углеводороды отделяются в абсорберах с активированным углем.
От азота газ очищают глубоким холодом в теплообменнике. Чистый гелий, применяемый для сварки, может содержать в своем составе весьма незначительное количество примесей в виде азота, водорода, кислорода и влаги. Гелий в 10 раз легче аргона, поэтому и расход его при сварке на 30-40% больше, чем аргона. При сварке в гелии выделяется теплоты больше, чем при сварке в аргоне (при одинаковом токе). Напряжение дуги в гелии в 1,5-2 раза выше, чем в аргоне.
Аргон получают из воздуха ректификацией, температура кипения аргона (-186°С) несколько ниже, чем кислорода (-183°С), и выше, чем азота (-196°С), поэтому в ректификационных колоннах происходит избирательное испарение отдельных газов. Дальнейшим глубоким охлаждением и фракционной перегонкой этой смеси увеличивают концентрацию аргона до необходимой величины. От остатков аргон очищают беспламенным сжиганием водорода в «сыром» аргоне в присутствии катализатора.
Аргон несколько тяжелее воздуха, поэтому струя его хорошо очищает дугу и зону сварки. Дуга в аргоне отличается высокой стабильностью.
Аргоногелиевая смесь обеспечивает высокую стабильность дуги и ее высокую тепловую мощность. При сварке алюминия в этой смеси швы получаются значительно плотнее, чем в аргоне.
Аргонокислородная смесь понижает критический ток, при котором капельный перенос металла переходит в струйный, а также способствует получению более плотного наплавленного металла, улучшает сплавление, уменьшает подрезы и увеличивает производительность, при сварке низкоуглеродистых и низколегированных сталей плавящимся электродом.
Аргоноводородная смесь увеличивает напряжение дуги, повышает ее тепловую мощность и способствует получению более чистого наплавленного металла.
Смесь аргона с углекислым газом при сварке низкоуглеродистых и низколегированных сталей способствует устранению пористости в швах, повышает стабильность горения дуги и улучшает формирование шва при сварке тонколистовых сталей.
Смесь аргона с азотом применяют при сварке меди и некоторых ее сплавов плавящимся электродом.
Азотно-дуговая сварка. Этот вид сварки применяется для соединения меди, так как азот является по отношению к меди инертным газом. Азот получают ректификацией воздуха на кислородных установках. Хранят и транспортируют азот в стальных баллонах черного цвета с желтой кольцевой полосой при давлении 150 атм (15 МПа). При азотно-дуговой сварке в качестве электродов применяют угольные или графитные стержни. Вольфрамовые электроды при использовании азота применять нецелесообразно, так как образующиеся на их поверхности нитриды вольфрама легкоплавки, вследствие чего расход вольфрама резко возрастает. При азотно-дуговой сварке угольным электродом напряжение сварочной дуги должно быть в пределах 22-30 В. Процесс сварки ведут постоянным током на прямой полярности. Установка для сварки в азоте аналогична установке для сварки в аргоне, только горелка должна иметь специальные сменные наконечники для закрепления угольных стержней. Освоена также азотно-дуговая сварка меди плавящимся электродом.
Атомно-водородная сварка. Сварка представляет собой электрохимический вариант сварки плавлением. Процесс происходит за счет теплоты электрической дуги и рекомбинации водорода, предварительно диссоциированного вблизи столба независимой дуги между двумя вольфрамовыми электродами. По степени концентрации теплоты атомно-водородная сварка занимает промежуточное положение между ацетилено-кислородной сваркой и сваркой вольфрамовым электродом в среде инертных газов. Химическая активность молекулярного и особенно диссоциированного водорода создает активную защиту расплавленного металла от вредного воздействия атмосферного воздуха. Атомно-водородной сваркой нельзя сваривать латунь по причине интенсивного испарения цинка, медь вследствие высокой склонности ее к насыщению водородом, а также титан, его сплавы и ряд редких элементов (Zr, Ne, Та) из-за их химической активности в отношении водорода. Хорошо свариваются атомно-водородной сваркой низкоуглеродистые и легированные стали и чугун.
Сварочный режим определяется двумя параметрами: величиной тока и напряжением.
В зависимости от расхода газа, мощности дуги, расстояния между электродами дуга может быть спокойной или звенящей. Спокойной дуге соответствует меньшая мощность, звенящая дуга характеризуется большим расходом газа, большим расстоянием между электродами, большей мощностью, чем спокойная, и издает резкий звук.
Применение атомно-водородной сварки в настоящее время в промышленности ограничено, что объясняется следующим: источники питания должны иметь весьма высокое напряжение холостого хода 250-300 В, что опасно для жизни человека; процесс трудно поддается механизации; относительно низкая производительность сварки металла средних и больших толщин; развитие весьма эффективных и производительных способов сварки — аргонодуговой сварки, сварки под флюсом, ручной дуговой сварки качественными электродами и др.

голоса
Рейтинг статьи
Читайте так же:
Плотность алюминия в килограммах на метр кубический
Ссылка на основную публикацию
Adblock
detector