Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Функциональная схема блока питания

Функциональная схема блока питания

Источник вторичного электропитания (ИВП) предназначен для получения напряжения, необходимого для непосредственного питания электронных компонентов устройства. При разработке источника вторичного электропитания необходимо учитывать ряд факторов, определяемых условиями эксплуатации, свойствами нагрузки, требованиями к безопасности и т.д.

Следует обратить внимание на соответствие электрических параметров ИВП требованиям питаемого устройства, а именно:

• требуемый уровень стабилизации напряжения питания;

• допустимый уровень пульсации напряжения питания.

Немаловажны и характеристики ИВП, влияющие на его эксплуатационные качества:

• наличие систем защиты;

Являясь неотъемлемой частью радиоэлектронной аппаратуры, средства вторичного электропитания должны жестко соответствовать определенным требованиям, которые определяются как требованиями к самой аппаратуре в целом, так и условиям, предъявляемым к источникам питания и их работе в составе данной аппаратуры. Существует четыре основных типа сетевых источников питания:

• безтрансформаторные, с гасящим резистором или конденсатором;

• линейные, выполненные по классической схеме: понижающий трансформатор — выпрямитель — фильтр — стабилизатор;

• вторичные импульсные: понижающий трансформатор — фильтр — высокочастотный преобразователь 20-400 кГц;

• импульсные высоковольтные высокочастотные: фильтр — выпрямитель

220 В — импульсный высокочастотный преобразователь 20-400 кГц.

Линейные источники питания отличаются предельной простотой и надежностью, отсутствием высокочастотных помех. Высокая степень доступности комплектующих и простота изготовления делают их наиболее привлекательными. Кроме того, в некоторых случаях немаловажен и чисто экономический расчет — применение линейных ИВП однозначно оправдано в устройствах, потребляющих до 500 мА, которые требуют достаточно малогабаритных источников вторичного электропитания.

Полная функциональная схема линейного источника вторичного электропитания представлена в приложении А. Она состоит из следующих компонентов:

фильтр низких частот;

Трансформатор — необходим для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.

Выпрямитель напряжения — преобразует переменное напряжение в напряжение одной полярности.

Фильтр низких частот будет уменьшать пульсации напряжения на выходе выпрямителя.

Стабилизатор напряжения — необходим для стабилизации напряжения питания устройства, то есть стабилизатор получает питание от внешнего источника питания и выдает на своём выходе напряжение.

Рисунок 5. Функциональная схема блока питания

На трансформаторе входной ток и напряжение преобразуются, в необходимые для работы устройства схемы. Выпрямитель используется для преобразования переменного тока в постоянный. Фильтр низких частот предназначен для уменьшения пульсации напряжения в цепи. И в итоге стабилизатор выдает на своем выходе напряжение, не зависящее от напряжения питания.

Еще статьи по теме

Проектирование делителя частоты цифровых сигналов с постоянным коэффициентом деления
Электроника представляет собой бурно развивающуюся отрасль науки и техники. Она изучает физические основы и практическое применение различных электронных приборов. Часто при использовании преобразовательных или измери .

Развитие оптимального метода линейного оценивания различных числовых характеристик полезных сигналов в классе ФФС
При разработке перспективных и оптимизации существующих информационно-измерительных систем (ИИС) различного назначения, широко используемых в гражданских и военных сферах, особое внимание уделяется вопросам оптимизации обрабо .

Как устроен компьютерный блок питания и как его запустить без компьютера

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Содержание статьи

Как устроен компьютерный блок питания и как его запустить без компьютера

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Устройство компьютерного блока питания

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Все узлы бока питания

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

Упрощенная структурная схема ИБП

А вот схема электрическая принципиальная, разбитая на блоки.

Принципиальная схема компьютерного блока питания

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Блок питания без входного дросселя

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Однотактный и двухтактный преобразователь

Типовая схема с ШИМ-контроллером выглядит примерно так:

Схема с ШИМ-контроллером

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Часть принципиальной схемы БП

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Часть принципиальной схемы БП

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Часть принципиальной схемы БП

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Быстродействующие диоды с малым падением напряжения

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Дополнительные функции БП

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Активный корректор коэффициента мощности

Схема корректора

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Распиновки разьемов БП

Разьемы блоков питания

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3. 5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

Характеристики блока питания

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Использование блока питания без компьютера

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Установка кнопки или тумблера

Кнопка управления

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Схема блока питания

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3.3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

ИСТОЧНИКИ ПИТАНИЯ КОНСТРУКТИВА АТХ ДЛЯ КОМПЬЮТЕРОВ

Компьютерная техника в последнее время стремительно развиваетсясовершенствуется технология изготовления, высокими темпами растут быстродействие, емкость оперативной и буферной памяти, емкость жестких дисков.

На фоне такого стремительного развития компьютеров блоки питания изменились незначительно. За последнее время самое существенное изменение связано со способом включения блока питания. В блоках питания, выпускаемых ранее, включение производилось механическим замыканием контактов, через которые подается высокое внешнее напряжение сети.

В последнее время широкое развитие получили источники питания типа АТХ.

УСТРОЙСТВО И РАБОТА

В источниках питания для конструктива АТХ (в дальнейшем — источник) изменен разъем для подключения питания к системной плате. Он имеет 20 контактов, и через него подаются напряжения ±5 В, ±12 В, +3.3 В (для будущих моделей PCI плат расширения). Кроме того, на разъем выводится сигнал "PS-ON", предназначенный для выключения питания программными средствами, например, по команде "Shut down the computer" ("выключить компьютер") в среде WINDOWS.

В связи с этим в блок питания добавлен вспомогательный источник дежурного питания "+5 V5B" и дистанционное управление включением и выключением выходов источников постоянного напряжения. Все выходные напряжения, кроме "+5 VSB", запрещаются сигналом лог. "1" на входе "PS-ON".

Спецификой источников конструктива АТХ являются высокие массогабаритные характеристики при средней мощности 230 Вт:

  • КПД не менее 65% при полной нагрузке на всех выходах;
  • значительный диапазон изменения тока нагрузки — от 10 до 100%;
  • низкий уровень шума и пульсаций всех выходных напряжений;
  • низкий уровень излучения электромагнитных помех;
  • хорошая изоляция выходных напряжений от питающей сети;
  • широкий диапазон допустимого напряжения сети — 180. 265 В для стандарта 220 В и 90. 135 В для стандарта 110 В;
  • рабочий диапазон изменения частоты питающего напряжения от 48 до 63 Гц;
  • диапазон рабочих температур от 0 до 40°С при относительной влажности от 10 до 85% без выпадения конденсата.

Структурная схема источника (рис. 1) состоит из двух функциональных узлов — сетевого выпрямителя (СВ) и преобразователя напряжения (ПН). Преобразователь напряжения включает в себя конвертор (К) и устройство управления (УУ). Конвертор, в свою очередь, состоит из инвертора (И), преобразующего постоянное выходное напряжение СВ в переменное прямоугольной формы; силового трансформатора, работающего на повышенной частоте (

60 кГц) и обеспечивающего гальваническую развязку сети с нагрузкой; выпрямителя и высокочастотного LC фильтра (БФ). Устройство управления обеспечивает мощные транзисторы инвертора импульсами возбуждения изменяемой длительности, реализуя, таким образом, принцип широтно-импульсного регулирования и стабилизации выходного напряжения Uh.

СВ — сетевой выпрямитель,

И — регулируемый инвертор;

ВПр — вспомогательный преобразователь для "+5VSB",

УИ — усилители импульсов базового тока силовых ключей инвертора;

ВФ — выпрямитель и сглпжиеюющий фильтр;

СС — схема сравнения;

СТ — линейный стабилизатор "+5 VSB ";

ВВ — вспомогательный выпрямитель.

Рис.1. Структурная схема блока питания

Кроме того, устройство управления выполняет функции плавного включения и аварийного отключения блока питания.

Согласование маломощных выходных сигналов логических элементов УУ с входами силовых транзисторов выполняется усилителями импульсов (УИ) через трансформатор Т2, который обеспечивает гальваническую развязку.

Схема вспомогательного преобразователя (ВПр) обеспечивает напряжениями питания усилители импупьсов, узлы схемы управления и линейный стабилизатор "+ 5VSB".

После запуска инвертора устройство управления получает питание от вспомогательного выпрямителя (ВВ).

Рис. 2. Принципиальная схема источника питания — щелкните мышью для увеличения

Сетевой выпрямитель (рис. 2) выполняет функции выпрямления напряжения сети и сглаживания пульсаций; обеспечивает режим плавной зарядки конденсаторов фильтра С5 и С6 (терморезистор ТН1 ограничивает пусковой ток заряда конденсаторов С5, С6 до допустимого значения) при включении источника; обеспечивает бесперебойность подачи энергии в нагрузку при кратковременных (до 300 мсек) провалах напряжения сети ниже допустимого уровня и уменьшает уровень помех за счет применения помехоподавляющш фильтров (элементы CXI , BL 1, BL 2, BL 3, CY 1, CY 2, C 1, LF 1, C 2, СЗ, С4>.

Для выравнивания напряжений конденсаторы С5 и С6 шунтируются резисторами R 2, R 3 (с допуском не более ±2%), которые, к тому же, обеспечивают разрядку этих конденсаторов при выключении источника питания.

На выходе СВ формируется постоянное напряжение, которое может составлять 264-340 В для однофазной сети

220 В с учетом допуска — 15%. + 10%.

Двухполюсный выключатель SW 1 коммутирует входное сетевое напряжение. Ключ SW 2 служит для перехода на стандарт питающего напряжения

110 В. При его замыкании входной выпрямитель переходит в режим удвоителя напряжения по схеме Латура.

Силовая часть регулируемого инвертора выполнена по полумостовой схеме на транзисторах Q 1 и Q 2 (рис. 2). Транзисторы Q 1 и Q 2 открываются противофазно на равные временные интервалы t1 и t2 (рис. 3).

Временные интерналы открытого состояния транзисторов разделены защитным интервалом дельтаt , исключающим возникновение сквозного тока через Q 1 и Q 2. Выходной сигнал инвертора подается через токовый датчик Т4 на первичную обмотку силового трансформатора Т1. Силовой трансформатор Т1 подключается к выходу емкостного делителя напряжения С5, С6 через конденсатор С7, исключающий падмагничивание сердечника трансформатора и одностороннее насыщение его магнитопровода в установившемся режиме работы. Защиту от коммутационных импульсов напряжения обеспечивают варисторы VD 1 и VD 2. Цепочка R 4, С8, шунтирующая первичную обмотку трансформатора Т1, снижает добротность резонансного контура, что также способствует уменьшению импульсных помех.

Возвратные диоды D 1 и D 2 ограничивают напряжения на коллекторах транзисторов Q 1 и Q 2, обеспечивая их безопасную paботу в инверсном режиме при возврате реактивной энергии, накопленной в нагрузке и трансформаторе, в систему электроснабжения через открытый транзистор.

Усилители импульсов на транзисторах Q 4 и G 5 сигналами от IC 1 ( TI 494) с помощью согласующего трансформатора Т2 управляют работой силовых ключей (транзисторы Q 1 и Q 2). Особенностью работы данных усилителей является положительное напряжение смещения на емкости С15. Падение напряжения на диодах D10 и D11 используется для динамического запирания транзисторов Q 4 и Q5.

Рис. 3. Временные диаграммы коммутационных процессов переключения силовых транзисторов Q 1 и Q 2

Управление базовыми цепями транзисторов Q1 и Q 2 осуществляется через ускоряющие цепочки D 3, R 7, С9, R 5 и D 4, R 8, С10, R 6, которые форсируют прямые и обратные токи баз Q 1 и Q 2 на этапах их включения и выключения.

Трансформатор Т4 служит для формирования сигнала аварийного выключения источника при превышении мощности потребления свыше 250 Вт. Порог срабатывания защиты устанавливается переменым резистором VR 1.

На могнитопроводе силового трансформатора Т1 располагаются вторичные обмотки для получения выходных напряжений ±12 В, ±5 В, +3.3 В. Выпрямители напряжений вторичных обмоток выполнены по двух-полупериодной схеме, причем для получения выходных напряжений +12 В, +5 В, +3.3 В используются сдвоенные диоды, установленные на радиаторе. Трансформатор Т5 снижает уровень синфазных помех в выходных напряжениях +12 В, +5 В, -12 В. Широтно-импульсная стабилизация применяется только для самых мощных источников "+12 V" (1макс.=8 А) и "+5 V " (1макс.=22 А). В этой ситуации стабильность остальных источников оказывается недостаточной, и для ее повышения используются либо интегральные линейные аабилизаторы напряжения ( IC4 в канале "-12 V " и IC5 в канале "-5 V "), либо стабилизатор на дискретных элементах (канал "+3.3 V "). Последний выполнен на регулирующем транзисторе Q10, резисторах R 60 . R63, VR 3, конденсаторе СЗ и микросхеме IC 7. Микросхема IC 7 ( TL 431) представляет собой маломощный регулируемый стабилизатор постоянного напряжения параллельного типа положительной полярности и используется в качестве регулируемого источника опорного напряжения ("регулируемого стабилитрона") [3].

Вспомогательный преобразователь, обеспечивающий напряжениями питания узлы устройства управления и источника "+5 VSB ", представляет собой однотактный преобразователь напряжения (ОПН) с самовозбуждением. Положительная обратная связь обеспечивается дополнительной обмоткой, расположенной на магнитопроводе трансформатора ТЗ.

Резистор R10 обеспечивает самовозбуждение ОПН посредством начального запускающего тока в базу транзистора QЗ. Демпфирование импульсного коллекторною напряжения транзистора выполняется цепью R 14, С13. Большие коммутационные перегрузки транзистора Q3 по току коллектора являются основным недостат ком рассмотренной схемы и требуют применения довольно мощного высоковольтного ключевого транзистора, например, 2SC4020

Выходное напряжение "+5 VSB " формируется из выпрямленного диодом D 20 с помощью линейного стабилизатора ICЗ. Питание ВПр осуществляекч от сетевого выпрями теля через резистор R 9.

В данном источнике в качестве схемы управления УУ используется мноюфункционалыюя ИМС типа TL 494, предназначенной для управления импульсными источниками вторичною электропитания различного вида [3]. Ее аналогами являются ИМС мРС494, IR 3 MO 2, КА7500 и отечественная КР1114ЕУ4.

Питание микросхемы в установившемся режиме работы осуществляется от вторичной обмотки трансформатора Т1 через выпрямительный диод D22. Микросхема имеет встроенный источник опорного напряжения (ИОН), обеспечивающий стабильным напряжением остальные узлы ИМС, а также элементы токовой защиты; транзисторы Q 6. Q 8. микросхему IC2 и др. ИОН формирует опорное напряжение +5В ± 1% на выходе (вывод 14) при подаче на вход (вывод 12) напряжения 27 В.

Частота внутреннего задающею генератора задается элементами R 26 и С17, подключенными соответственно к выводам 6 и 5 ИМС. При R 26=16 кОм и С1 7=1000 пФ получим f —66 кГц (Т= 15 мксек)

Выходное напряжение ИОН через делитель R 25, R 24 подается на вывод 4. Конденсатор С18, установленный в этом делителе, определяет временные параметры плавного запуска источника при начальном включении напряжения питания или после срабатывания соответствующих схем защиты.

Вывод 1 ИМС является входом схемы сравнения. Уровень выходных напряжений источника устанавливается потенциометром VR 2. Потенциометр VR 2 регулирует напряжение, получаемое с выходов самых мощных источников +12 В и +5 В.

Корректирующая цепь R 22, С16 обеспечивает устойчивый режим стабилизации.

Сигнал с вывода 3 ИМС TL 494 используется дли образования сигнала "POWER GOOD". Сигнал проходит через резистор R23, транзистор Q 6 и операционный усилитель IC 2. С вывода 1 усилителя IC 2 на резисторе R 51 образуется ситнал пог. "1" с временем задержки от 100 до 500 мсек при включении и не более 1 мсек при выключении. Время задержки при включении определяется емкостью С19.

Второй операционный усилитель в IC 2 ( LM 393) используется в токовой защите. При увеличении мощности, потребляемой источником, более 250 Вт напряжение с потенциометра VR 1 через диод D 13 поступает на вход компаратора ИМС LM 393 (вывод 6). Отрицательное выходное напряжение с вывода 7 IC 2 инвертируется транзистором G 9 и через диод D Т 8 поступает на вывод 4 IC 1, запрещая выходные импульсные последовательности но выводах 8 и 11 и переводя блок питания в дежурный режим.

Схема на резисторах R 40, R 48, R 52, R 54, R 55, диодах D 19, D 23, D 24, стабилитронах ZD 2, ZD 3 и конденсаторе С28 используется также для получения положительного напряжения защиты при перегрузках источников +3,3 В, +6 В, -5 В, -12 В или превышении напряжений на выходах источников +3.3 В и +5 В.

Каскад на транзисторах Q 7, Q 8 и "правляемом стабилитроне" IС6 ( TL 43 I ) используется дпя дистанционного включения и выключения источника сигналами с логическими уровнями "0" и "1" соответственно.

Блоки питания формата АТХ оснащены схемой терморегулирования: скорость вращения охлаждающего вентилятора зависит от температуры внутри корпуса — на максимальную скорость вентилятор выходит только при температуре, превышающей 40°С Таким образом, при нормальной температуре источники обладают пониженным уровнем шума.

Принцип работы импульсных блоков питания. Схема импульсного блока питания

Блоки питания всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

принцип работы импульсных блоков питания

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается ограничение тока. Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

импульсный лабораторный блок питания

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

ремонт импульсных блоков питания

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

разъемы блока питания

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

микросхемы импульсных блоков питания

Работа блоков на 12 вольт

Импульсный блок питания (12 вольт) включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

схема импульсного блока питания 12В

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

сетевой импульсный блок питания

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

голоса
Рейтинг статьи
Читайте так же:
Содержание аргона в воздухе в процентах
Ссылка на основную публикацию
Adblock
detector