Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Отпуск углеродистой стали Цель работы

Отпуск углеродистой стали Цель работы

Получить практические навыки проведения закалки и отпуска углеродистой стали.

Исследовать влияние температуры отпуска на структуру и твердость углеродистой стали.

Исследовать влияние отпускной хрупкости на ударную вязкость легированной стали.

Приборы, материалы и инструмент

1. Твердомер Роквелла.

2. Муфельная электропечь, клещи.

3. Образцы углеродистой и легированной стали.

4. Ат­лас микроструктур.

Краткие теоретические сведения

После закалки на мартенсит углеродистая сталь имеет высокую твердость (58-62 HRC), но низкую пластичность. Кроме того, в про­цессе закалки, в результате неравномерного охлаждения образца или детали по сечению, возникают довольно значительные закалочные напря­жения. Поэтому закалка углеродистых сталей не является оконча­тельной обработкой.

Закалочные напряжения подразделяются:

Напряжения, которые возникают в результате структурных превраще­ний (в данном случае мартенситных) в охлаждаемом образце или детали, называ­ют фазовыми. Возникновение фазовых напряжений при закалке обус­ловлено двумя причинами:

Удельный объем мартенсита больше, чем удельный объем аустенита.

Неодновременное протекание мартенситного превращения в поверхностных и внутренних слоях детали.

Напряжения, возникающие в результате неравномерного теплового сжатия образца по сечению в процессе закалки, называют термическими.

Рассмотрим процесс возникновения закалочных (фазовых и термических) напряжений в образце подробнее.

В начальном промежутке времени при охлаждении поверхност­ных слоев до точки Мн (≈ 240°С) в них начнется мартенситное превращение, в результате чего увеличится объем материала, создавая сжимающие напряжения. Внутренняя часть образца, находясь пока в аустенитном состоянии, будет испытывать растягивающие напряжения. По мере охлаждения центральной части образцов и развития мартенситных превращений, знак напряжений на поверхности и в сердцевине образца поменяется. Теперь уже растягивающие напряжения возникают в поверхностных слоях, а сжимающие – в центральной части (рис. 1а).

С другой стороны, поверхностные слои образца, охлажда­ясь быстрее, чем внутренние, сжимаются по законам физики. Это приводит к неравномерности из­менения объема: внутренние слои препятствуют сжатию внешних слоев. Вслед­ствие этого, в поверхностных слоях возникают растягивающие, а во внутренних – сжимающие напряжения. При дальнейшем охлаждении образца, теперь уже сердцевина будет испытывать тепловое сжатие. Вследствие этого, вышеуказанные напряжения начнут уменьшаться и в некоторый момент произойдет изменение знака напряжений на поверхности и в сердцевине образца: на поверхности получаются остаточные напряжения сжатия, а в сердцевине – напряжения растяжения (рис. 1б). Таким образом, тепловые напряжения изменяются в обратном порядке относительно структурных напряжений.

Рисунок 1 – Схема эпюры остаточных напряжений: а – структурные; б – тепловые; в – суммарные. (–) – растягивающие; (+) – сжимающие напряжения

При закалке одновременно возникают как тепловые, так и структурные напряжения, которые суммируются (рис. 1в). Поэтому после закалки на поверхности образца всегда присутствуют, как правило, растягивающие напряжения, хотя иногда присутствуют и сжимающие.

Следует обратить внимание на то, что: 1) закалочные напряжения получаются наибольшими не после окончательного охлаждения, а в процессе самого охлаждения и мо­гут вызвать коробление детали; 2) в поверхностных слоях могут возникать значительные растягивающие напряжения, которые приводят к появлению трещин (сжи­мающие напряжения трещин не вызывают).

Структура закаленной стали состоит из двух неустойчивых фаз: мартенсита и остаточного аустенита. Поэтому при длительном выле­живании при комнатной температуре и особенно нагреве неустойчивая структура закаленной стали стремится перейти в более устойчивое состояние, т.е. в структуру, состоящую из феррито-цементитной сме­си.

При нагреве закаленной стали происходят процессы диффузии углерода из пересыщенной решетки мартенсита, что приводит к уменьшению степени ее тетрагональности, снижению остаточных внутренних напряжений в стали и образованию карбидных частиц. Скорость процесса распада мартенсита и количество углерода в нем зависят от температуры нагрева. Чем выше температура нагрева мартенсита, тем больше скорость распада и тем меньше углерода будет оставаться в нем.

Для уменьшения или полного устранения закалочных напряжений, а также для повышения пластичности стали после закалки проводят отпуск  процесс нагрева закаленной стали до температур ниже критической точки Ас1, выдержки при выбранных температурах и последующего охлаждения, как правило, на воздухе. В зависимости от температур нагрева различают 3 вида отпуска: низкий, средний и высокий.

Низкий отпуск заключается в нагреве закаленной стали до температуры 150-250°С. Время выдержки зависит от формы и размеров детали. Выдержка должна обеспечить получение ста­бильной структуры при данной температуре отпуска. При низком от­пуске мартенсит закалки превращается в мартенсит отпуска (см. ат­лас микроструктур). Это превращение связано с уменьшением степе­ни тетрагональности мартенсита, которое происходит за счет выде­ления углерода из мартенсита в виде карбидных частиц Fе2С, коге­рентно связанных с твердым раствором. Структура стали после низ­кого отпуска состоит из мартенсита с меньшим содержанием углеро­да, чем исходный мартенсит, и мелких карбидных частиц.

Низкий отпуск предназначается для частичного снятия внутренних закалочных напряжений и повышения вязкости и пластичности стали без заметного снижения ее твердости (рис. 2).

Этому виду отпуска подвергают мерительный и режущий инструмент, работающий в условиях безударной нагрузки: метчики, плашки, рез­цы чистовой обработки и т. д.; детали, прошедшие химико-термичес­кую обработку: цементацию, азотирование, цианирование и т. д. При низком отпуске углерод частично удаляется – диффундирует из пересыщенной решетки мартенсита с образованием включений промежу­точных карбидов типа FеxС. При этом уменьшается степень тетрагональности решетки и, как следствие, снижаются остаточные напря­жения. Мартенсит закалки переходит в мартенсит отпуска. Значитель­ных изменений в микроструктуре не происходит. Мартенситные иглы теряют свои ранее резкие очертания.

Читайте так же:
Соединение проводов с помощью зажимов

Рисунок 2  Влияние температуры отпуска на механические свойства стали

Средний отпуск заключается в нагреве закаленной стали до температуры 350-450°С.

Средний отпуск предназначается для почти полного снятия внутренних напряжений, повышения упругих и пластических свойств стали. Этому виду отпуска подвергаются инструмент, рабо­тающий в условиях ударной нагрузки: долбяки, строгальные резцы, резцы для черновой обработки дерева, слесарный инструмент и т. д. (максимальный нагрев до 350°С), детали машин, к которым предъявляются требования высоких упругих свойств: рессоры, пружины и др. (температура нагрева 400°С).

При таких температурах диф­фузионное перераспределение углерода в стали активизируется. Углерод покидает кристаллическую решетку мартенсита в результате почти полностью устраняется тетрагональность решетки, проис­ходит образование мелких устойчивых частиц карбида FезС сферической формы. Выделение избыточного углерода из решетки мартенсита приводит к образованию феррита. Остаточный аустенит превращается в мартенсит отпуска.

Получаемая после среднего отпуска структура называется трооститом отпуска. В отличие от троостита, полученного после за­калки в масле, троостит отпуска имеет зернистое строение высокой дисперсности (рис. 2).

В процессе среднего отпуска происходит уменьшение закалочных напряжений. Наблюдается повышение упругих свойств стали, некоторое снижение твердости и прочности.

Применимость среднего отпуска для упругих элементов конст­рукций объясняется достижением оптимального комплекса свойств: модуль упругости еще достаточно велик, а хрупкость, за счет распа­да мартенсита, устранена. При среднем отпуске значительное (до 30%) падение твердости и незначительное увеличение пластичности (рис. 1) происходят в основном за счет устранения тетрагональности, дефектов кристаллической решетки и остаточных напряжений.

Рисунок 2 – Пластинчатая (а) и зернистая (б) феррито-цементитная смесь

Высокий отпуск заключается в нагреве закаленной стали до температуры 500-700°С. Получаемая после высокого отпуска структура сорбита отпуска представляет собой феррито-цементитную смесь зернистого строения (рис. 2) средней степени дисперсности (см. атлас микроструктур). Высокий отпуск обеспечивает полное снятие зака­лочных напряжений и дает наилучшее сочетание твердости, прочнос­ти, пластичности и ударной вязкости. Двойная термообработка, состоящая из закалки и высокого отпуска, называется термическим улучшением стали. Термическому улучшению подвергают ответственные детали ма­шин, изготовленные из углеродистых конструкционных сталей, испыты­вающие в эксплуатации статические, ударные и знакопеременные нагрузки (шестерни, валы, траверсы, плунжеры и т. д). Термическое улучшение позволяет понизить чувствитель­ность к надрезам и перекосам, к конструктивным переходам от одно­го сечения к другому, к изменению размеров детали и т. д.

При высоком отпуске, наряду с процессами распада закалочных структур (мартенсита и остаточного аустенита) в феррито-цементитной смеси наблюдаются процессы коалесценции (укрупнения) и сфероидизации (округления) частиц цементитной фазы. Уменьшается коли­чество цементитных включений в ферритной матрице и увеличиваются их размеры, т. е. снижается степень дисперсности структуры. Такая смесь феррита и цементита средней дисперсности зернистого строе­ния называется сорбитом отпуска, в отличие от сорбита закалки, имеющего пластинчатое стро­ение. При высоком отпуске происходит падение твердости (до 50%) закаленной стали при значительном увеличении пластичности (рис. 2) и удар­ной вязкости, максимальные значения которых достигаются при температуре отпуска 700°С.

Перед обработкой резанием применяют высокий отпуск (до 700°С), резко снижающий твердость предварительно закаленной стали и износ режущего инструмента. Частицы карбидов оказываются укрупненными. Такая структура именуется перлитом отпуска в отличие от пластин­чатого перлита, получающегося при непрерывном охлаждении стали из области аустенита.

Снижение прочности и увеличение пластичности происходит в ос­новном за счет увеличения количества плоскостей скольжения в фер­рите, свободных от цементитных включений, т. е. устранения препят­ствий для перемещения дислокаций.

Таким образом, на свойства отпущенной стали влияют температу­ра отпуска и время выдержки при той или иной температуре, способствующие протеканию диффузионных процессов. Время выдержки опре­деляется из расчета 2. 3 мин на 1 мм толщины обрабатываемого из­делия или образца.

Таким образом, для получения заданной твердости у одной и той же стали можно использовать охлаждение аустенита с заданной скоростью или закалку и отпуск. При одинаковой твердости, которая определяется степенью дисперсности феррито-цементитной смеси, об­работка по второму варианту обеспечивает более высокую пластич­ность стали и лучшее сопротивление развитию трещины. Это объясня­ется тем, что при такой термической обработке феррито-цементитная смесь имеет зернистое строение.

Глава 5.4. Отпуск и старение

Отпуск — это окончательная операция термической обработки, формирующая свойства металла, которая заключается в нагреве стали до температуры ниже Ас1, изотермической выдержке при заданной температуре и последующем охлаждении (обычно на воздухе).

Цель отпуска — получение окончательной структуры и свойств, которые формируются в результате полного или частичного распада мартенсита — пересыщенного твердого раствора углерода в Feα. При отпуске достигаются уменьшение остаточных напряжений и получение более равновесной структуры.

При нагреве мартенсит обедняется углеродом за счет выделения карбидов. В зависимости от температуры нагрева содержание углерода в твердом растворе может превышать равновесное (выделился не весь углерод), в этом случае в структуре сохраняется мартенсит, или приближаться к равновесному (0,006% С), что соответствует точке Q на диаграмме состояния Fe — Fe3C (см. рис. 4.2 и 5.1), тогда твердый раствор в структуре — феррит. В зависимости от температуры отпуска в большей или меньшей степени будет происходить коагуляция выделившихся карбидов.

Читайте так же:
Нож из мехпилы своими руками чертежи

Различают три вида отпуска стали: низкотемпературный (низкий), среднетемпературный (средний) и высокотемпературный (высокий) (рис. 5.21).

Низкий отпуск выполняют при температурах 150…250°С. При этом содержание углерода в твердом растворе сохраняется выше равновесного (из мартенсита выделился не весь углерод). Структура после такого отпуска — мартенсит, который в отличие от мартенсита закалки (М3) назван мартенситом отпуска (Мотп). Степень тетрагональности кристаллической решетки мартенсита понижается незначительно, также незначительно снижается и твердость (см. рис. 5.10). Предел прочности σВ и ударная вязкость KCU несколько увеличиваются вследствие уменьшения закалочных напряжений.

Таким образом, структура стали после низкого отпуска — мартенсит отпуска. Сталь сохраняет высокую твердость.

Низкому отпуску подвергают инструменты и детали, работающие в условиях изнашивания, для которых необходима высокая твердость:

  • режущие и мерительные инструменты, штампы холодного деформирования из углеродистых и легированных инструментальных сталей;
  • детали после поверхностной закалки (см. подразд. 5.5.2), цементации и последующей закалки (см. подразд. 5.5.1).

Обычно продолжительность отпуска составляет 1. 2,5 ч. Мерительный инструмент с целью стабилизации размеров подвергают отпуску с более длительными выдержками.

Рис. 5.21. Влияние температуры отпуска на структуру и механические свойства сталей: σв — предел прочности; σупр — предел упругости; KCU — ударная вязкость; HRC — твердость

Отпуск осуществляют на воздухе, в масле или расплаве солей (50 % KNО3 и 50 % NaNО2). В жидких средах обеспечивается быстрый и равномерный нагрев, а также точное регулирование температуры.

Средний отпуск проводят при 350. 500 °С. При температуре свыше 300 °С из мартенсита выделяется весь углерод в виде цементита. Однако коагуляция цементита при таких температурах весьма мала (средний диаметр частиц цементита — 0,3 ⋅10 -5 мм).

В результате среднего отпуска образуется дисперсная ферритно-цементитная смесь, которая называется трооститом отпуска — Тотп в отличие от троостита, получаемого при распаде аустенита (см. подразд. 5.1.3 и рис. 5.6). Цементит в троостите отпуска имеет зернистое строение, а в полученном при распаде аустенита — пластинчатое, что определяет ряд технологических свойств: при зернистой структуре достигается более высокая производительность при обработке резанием и лучшая пластичность.

Распад мартенсита на ферритно-цементитную смесь сопровождается снижением твердости до 40. 48 HRC, но ударная вязкость при этом повышается, так как происходит снижение закалочных напряжений. Однако основным является тот факт, что в результате среднего отпуска достигается максимальное значение предела упругости (см. рис. 5.21). Поэтому среднему отпуску подвергают рессоры, пружины, упругие элементы, а также детали и инструменты, для которых достаточна получаемая при отпуске твердость и необходима удовлетворительная ударная вязкость (например, слесарно-монтажный инструмент). Среднетемпературный отпуск можно проводить в расплавах солей и печах с воздушной атмосферой.

Высокий отпуск осуществляется при температурах 500. 600 °С. Полученная ферритно-цементитная структура с зернистым цементитом называется сорбит отпуска (Сотп).

При высоком отпуске происходит не только полное выделение углерода из мартенсита, но и заметный рост (коагуляция) выделившихся кристаллов цементита (средний диаметр частиц цементита в сорбите 10-5мм, т.е. они примерно в 3 раза крупнее, чем в троостите). В результате отпуска заметно понижается твердость стали, которая составляет 300 НВ, но значительно увеличиваются пластичность и ударная вязкость (см. рис. 5.10), кроме того, происходит практически полное снятие закалочных напряжений.

По сравнению с отжигом закалка и высокий отпуск обеспечивают получение сталью более высоких значений всех механических свойств: прочности (σт σв), твердости, пластичности (δ и ψ), а также ударной вязкости (KCU). Поэтому термическая обработка, состоящая из закалки и высокого отпуска, называется улучшением. Улучшению подвергают детали, эксплуатируемые в условиях высоких напряжений в сочетании с ударными нагрузками. Высокий отпуск можно проводить в расплаве солей и в печах с воздушной атмосферой.

Термин старение, а не отпуск, используют при окончательной термической обработке сплавов, предварительно подвергнутых закалке без полиморфного превращения (см. подразд. 2.7), а также сплавов, не подвергаемых закалке для стабилизации структуры (см. гл. 7). Старение может быть естественным, если оно протекает при комнатной температуре, или искусственным, если его проводят при повышенной температуре.

Операции отпуска и стабилизационного старения выполняются для устранения или, по крайней мере, снижения остаточных деформаций. Напряжения в заготовках при отпуске и старении снимаются тем полнее, чем выше температура этих термических операций.

Отпуск сталей

Отпуск — это процесс термической обработки, заключающийся в нагреве закаленной стали до температур ниже точки Ас1, c целью получения равновесной структуры и заданного комплекса механических свойств.

Содержание

Читайте так же:
Перфорированная стенка для инструмента

После закалки сталь имеет структуру на основе мартенсита с тетрагональной искаженной кристаллической решеткой и остаточного аустенита, количество которого зависит от химического состава стали. При нагреве закаленной стали в ее структуре происходят фазовые превращения, которые можно показать в виде схемы.

Схема фазовых превращений при отпуске сталей

Схема фазовых превращений при отпуске сталей

Низкий отпуск сталей

Низкий отпуск стали делают при температуре до 250°С. При этом процессе из мартенсита выделяется часть избыточного углерода с образованием мельчайших карбидных частиц (ε-карбидов). ε-карбиды выделяются в виде пластин или стержней и они когерентно связаны с решеткой мартенсита. Распад остаточного аустенита при низком отпуске происходит по механизму бейнитного превращения: образуется гетерогенная смесь кристаллов низкоуглеродистого мартенсита и дисперсных карбидов. Продуктом низкого отпуска является мартенсит отпуска, который отличается от мартенсита закалки меньшей концентрацией углерода и наличием в нем карбидов (ε-карбидов), которые когерентно связаны с решеткой мартенсита.

При температуре около 250°С начинается превращение карбида в цементит; при этом когерентность решеток α-твердого раствора мартенсита и карбидов нарушается.

Низкому отпуску подвергают инструментальные железоуглеродистые материалы (режущий и мерительный инструмент), а также стали, которые подвергались цементации, нитроцементации. Часто низкий отпуск делают для сталей после термообработки токами высокой частоты.

Средний отпуск

Средний отпуск проводится при температурах 350–400 °С. При этом из мартенсита выделяется весь избыточный углерод с образованием цементитных частиц. Тетрагональность (степень тетрагональности) решетки железа уменьшается, она становится кубической. В результате вместо мартенсита остается феррит. Такая феррито-цементитная смесь называется трооститом отпуска, а процесс, приводящий к таким изменениям, среднетемпературным отпуском. При среднем отпуске снижается плотность дислокаций и уменьшаются внутренние напряжения в стали.

Средний отпуск применяется при термообработке упругих деталей: рессор, пружин и др.

Высокий отпуск

Во время высокого отпуск (450-550°С и выше) в углеродистых сталях происходят изменения структуры, не связанные с фазовыми превращениями: изменяются форма, размер карбидов и структура феррита. С повышением температуры происходит коагуляция – укрупнение частиц цементита. Форма кристаллов постепенно становится сферической – этот процесс называется сфероидизацией.

Коагуляция и сфероидизация карбидов начинают происходить более интенсивно с температуры 400°С. Зерна феррита становятся крупными, и их форма приближается к равноосной. Феррито-карбидная смесь, которая образуется после отпуска при температуре 400–600 °С, называется сорбитом отпуска. При температуре, близкой к точке А1, образуется достаточно грубая феррито-цементитная смесь – перлит.

Высокий отпуск с температур 450-550°С применяется для большинства конструкционных сталей. Его широко используют при термообработке различных втулок, опор, крепежных изделий, работающих на растяжение-сжатие и других изделий, которые испытывают статические нагрузки.

Явление отпускной хрупкости

При отпуске некоторых сталей возможно протекание процессов, которые снижают ударную вязкость стали не меняя остальные механические свойства. Такое явление называется отпускной хрупкостью и наблюдается в температурных интервалах отпуска при 250–400ºС и 500–550ºС. Первый вид хрупкости называется отпускной хрупкостью Ι рода и является необратимым, поэтому стоит избегать отпуска сталей при этих температурах. Данный вид присущ практически всем сталям, легированным хромом, магнием, никелем и их сочетанием, и обусловлен неоднородным выделением карбидов из мартенсита. Второй вид отпускной хрупкости — отпускная хрупкость ΙΙ-го рода является обратимым. Отпускная хрупкость ΙΙ-го рода проявляется при медленном охлаждении легированной стали при температуре 500–550°С. Данная хрупкость может быть устранена повторным отпуском с большой скоростью охлаждения (в воде или масле). В этом случае устраняется причина этой хрупкости – выделение карбидов, нитридов, фосфидов по границам бывших аустенитных зерен. Устранение отпускной хрупкости легированных сталей возможно введением в них малых добавок молибдена (0,2–0,3 %) или вольфрама (0,5–0,7 %).

Графически эти виды хрупкости выглядят, как показано на рисунке.

Отпускная хрупкость при отпуске стали

Проявление отпускной хрупкости в сталях при отпуске

Практически все стали подчиняются закону: повышение температуры отпуска — снижение прочностных характеристик и повышение пластических, как показано на рисунке ниже.

Влияние температуры отпуска на механические свойства стали

Влияние температуры отпуска на механические свойства стали

Такая закономерность не касается быстрорежущих инструментальных легированных карбидообразующими элементами сталей.

Отпуск быстрорежущих инструментальных сталей

Основными легирующими элементами быстрорежущих сталей (Р18, Р6М5 и др.) являются вольфрам, молибден, кобальт и ванадий — элементы, обеспечивающие теплостойкость и износостойкость при эксплуатации. Быстрорежущие стали относятся к карбидному (ледебуритному) классу. Под закалку эти стали нагревают до температуры выше 1200°С (Р18 до температуры 1270°С, Р6М5 — до 1220°С). Высокие температуры закалки необходимы для более полного растворения вторичных карбидов и получения аустенита высоколегированного хромом, молибденом, вольфрамом, ванадием. Это обеспечивает получение после закалки теплостойкого мартенсита. Даже при очень высоком нагреве растворяется только часть карбидов. Для этих сталей характерно сохранение мелкого зерна при высоких температурах нагрева.

Железо и легирующие элементы «быстрорезов» имеют сильно отличающиеся свойства теплопроводности, поэтому при нагреве, для избежания трещин, следует делать температурные остановки. Обычно при 800 и 1050°С. При нагреве крупного инструмента первую выдержку делают при 600°С. Время выдержки составляет 5-20 мин. Выдержка при температуре закалки должна обеспечить растворение карбидов в пределе их возможной растворимости. Охлаждение инструмента чаще всего делают в масле. Для уменьшения деформации применяют ступенчатую закалку в расплавах солей с температурой 400-500°С. Структура «быстрорезов» после закалки состоит из высоколегированного мартенсита, содержащего 0,3-0,4%С, нерастворенных избыточных карбидов и остаточного аустенита. Чем выше температура закалки, тем ниже положение точек Мн, Мк и тем больше остаточного аустенита. В стали Р18 присутствует примерно 25-30% остаточного аустенита, в стали Р6М5 — 28-34%. Для уменьшения аустенита можно сделать обработку холодом, но как правило этого не требуется.

Читайте так же:
Распиновка rj45 100 мбит 4 провода

После закалки следует отпуск при 550 — 570°С, вызывающий превращение остаточного аустенита в мартенсит и дисперсионное твердение за счет частичного распада мартенсита и выделения дисперсных карбидов легирующих элементов. Это сопровождается увеличением твердости (вторичная твердость). В процессе выдержки при отпуске из остаточного аустенита выделяются карбиды, что уменьшает его легированность, и поэтому при последующем охлаждении он претерпевает мартенситное превращение (Мн

150°С). В процессе однократного отпуска только часть остаточного аустенита превращается в мартенсит. Чтобы весь аустенит перешел в мартенсит применяют двух и трехкратный отпуск. Время выдержки обычно составляет 60 минут.
При назначении режима нужно учитывать химические свойства элементов и периодичность выделения карбидов в зависимости от температуры. Например максимальная твердость стали Р6М5 получается за счет 3-х стадийного отпуска. Первый отпуск при температуре 350°С, последующие два при температуре 560-570°С. При температуре 350°С выделяются частицы цементита, равномерно распределенные в стали. Это способствует однородному выделению и распределению спецкарбидов М6С при температуре 560-570°С.

Режим термической обработки рессор из стали 65Г

Назначение и особенности термической обработки легированных рессорно-пружинных сталей. Анализ зависимости эксплуатационных свойств от температуры и скорости отпуска. Технология проведения полной закалки деталей. Схема структурных превращений при нагреве.

РубрикаПроизводство и технологии
Видконтрольная работа
Языкрусский
Дата добавления07.04.2016
Размер файла889,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Режим термической обработки рессор из стали 65Г

Для изготовления упругих элементов общего назначения, применяются легированные рессорно-пружинные стали.

Особенность работы деталей типа упругих элементов состоит в том, что в них используются в основном упругие свойства стали и не допускаются при нагрузке (статической, динамической, ударной) возникновение пластической деформации.

В связи с этим стали должны иметь высокое сопротивление малым пластическим деформациям, т.е. высокие пределы упругости (текучести) и выносливости при достаточной пластичности и в сопротивлении хрупкому разрушению.

Важные характеристики сталей данного типа — релаксационная стойкость и прокаливаемость. Для обеспечения этих требований сталь должна иметь однородную структуру, т. е. хорошую закаливаемость и сквозную прокаливаемость (структуру мартенсита по всему сечению детали после закалки).

Наличие в структуре стали феррита, продуктов эвтектоидного распада, остаточного аустенита снижает упругие свойства детали. Известно, что сопротивление малым пластическим деформациям возрастает с уменьшением размера зерна в стали.

К группе рессорно-пружинных сталей общего назначения относятся стали перлитного класса с содержанием углерода 0,5. 0,7%, которые для улучшения свойств (прокаливаемость, предел выносливости, релаксационная стойкость, мелкозернистая структура) дополнительно легируют кремнием (1,5. 2,8%), марганцем (0,6. 1,2 %), хромом (0,2. 1,2%), ванадием (0,1. 0,25%), вольфрамом (0,8. 1,2%), никелем (1,4. 1,7).

Эксплуатационные свойства стали приобретают после термической обработки, состоящей в закалке и среднем отпуске (350. 5200С) на тростит отпуска (рис.1а).

Применение находит также изотермическая закалка на нижний бейнит (рис.1б).

термический закалка сталь легированный

В соответствии с заданием необходимо подобрать режим термической обработки стали 65Г. Сталь обладает стойкостью к росту зерна. Имеет высокие механические свойства.

Примем первый вариант термической обработки (рис. 1а): закалку и средний отпуск. По данным ГОСТа 14959-79 температура закалки для 65Г составляет 840-8600С (АС3 = 7880С).

В качестве охлаждающей среды применяем масло.

Последующий отпуск проводим при температуре 420-4500С (выше температуры необратимой отпускной хрупкости). Получаемая структура тростита отпуска (мелкозернистая ферритоцементитная смесь) обеспечит высокое сопротивление малой пластической деформации при достаточных значениях пластичности и вязкости (рис.2а, б) с НRC = 40. 50.

Указанный режим термической обработки (рис.3) обеспечивает получение следующих свойств (минимальных): s 0,2 > 1270МПа; s в > 1470МПа; d > 12%; y > 42%; НВ » 3900 — 4800 МПа (отпуск 4500 ).

Сталь 65Г — сталь перлитного класса. Кремний несколько повышает точку А3 и снижает А4. Критические точки стали АС1 — 7520С , АС3 — 7880С. Учитывая содержание углерода, сталь по структуре отжига относится к доэвтектоидным сталям, однако кремний сдвигает точку S диаграммы Fe -Fe3C до 0,7 % С, т. е. сталь становится почти эвтектоидной. Поэтому необходимо проведение полной закалки (температура А3 — 30-500С, т.е. » 840-8600С). При полной закалке сталь нагревают до однофазной мелкозернистой аустенитной структуры (рис.4).

Последующее охлаждение в масле со скоростью большей чем V кр (наименьшая скорость охлаждения, при которой аустенит превращается в мартенсит) обеспечивает получение мелкозернистого мартенсита (рис.5)

Читайте так же:
Сварка аргоном какой аппарат

VК — наименьшая скорость охлаждения, при которой аустенит превращается в мартенсит. Рассмотрим превращения, происходящие в стали 65Г при нагреве с исходной равновесной структуры Ф + Ц. На практике при обычных скоростях нагрева (электропечи) под закалку перлит сохраняет свое пластинчатое или зернистое строение до температуры АС1 (до 7520С для стали 65Г). При температуре АС1 в стали происходит превращение перлита в аустенит. Кристаллы (зерна) аустенита зарождаются в основном на границах фаз феррита и цементита. При этом параллельно развиваются два процесса: полиморфный переход Fea ® Fe g ; растворение аустенита в цементите.

Представим общую схему превращения П (Ф +Ц) ? А1 ® (Ф + Ц + А)1 ® (А + Ц)2 ® ( А неоднородный )3 ® (А гомогенный)4 Образование зерен аустенита происходит с большей скоростью, чем растворение цементита перлита, поэтому необходима выдержка стали при температуре закалки для полного растворения цементита и получения гомогенного аустенита.

Из рис.6 видно, что фазовая кристаллизация приводит к измельчению зерна в стали. При этом чем дисперснее структура перлита (Ф +Ц) и чем выше скорость нагрева стали, тем больше центров зарождения аустенита, а, следовательно, возрастает дисперсность продуктов его распада. Увеличение дисперсности продуктов распада аустенита приводит к увеличению пластичности, вязкости, уменьшение чувствительности к концентраторам напряжений. Рассмотрим изменение структуры в стали при закалке в масле. При непрерывном охлаждении стали со скоростью большей чем критическая скорость (рис.5) аустенит превращается в мартенсит. Мартенситное превращение развивается в сталях с высокой скоростью (1000-7000м/с) в интервале температур Мн. Мк. При этом необходимо учитывать, что с увеличением % С точки Мн и Мк понижаются, в то время как введение кремния их повышает.

Из рис.7 видно, что температура Мн и Мк определяются в основном химическим составом стали. В результате закалки стали 65Г структура может иметь кроме мартенсита и некоторое количество остаточного аустенита. Возможность мартенситного превращения в стали объясняется наличием принципа структурного и размерного соответствия между аустенитом — плоскость (111) и мартенситом — плоскость (110), т.е. g ® a переход носит бездиффузионный характер. Превращение аустенита в мартенсит происходит путем кооперативного направленного сдвига только атомов железа на расстояние меньше межатомных. Полученный мартенсит представляет собой перенасыщенный твердый раствор углерода в a — железе и имеет тетрагональную кристаллическую решетку. Атомы углерода занимают в основном октаэдрические поры. Образование в результате закалки мартенсита приводит к большим внутренним напряжениям, повышению твердости, прочности (фазовому наклепу), однако при этом возрастает склонность стали к хрупкому разрушению, что требует проведения дополнительно последующего отпуска.

Превращение в закаленной стали при среднем отпуске (450 С)

Нагрев закаленной стали до температуры АС1 принято называть отпуском. Отпуск должен обеспечить получение в стали необходимые эксплуатационных свойств. Структура стали 65Г после закалки состоит из мартенсита и остаточного аустенита. При отпуске будет проходить одновременно несколько процессов:

1. Распад перенасыщенного твердого раствора мартенсита, при котором углерод выделяется в виде карбидов ( e — карбид, Fe3C ).

2. Распад остаточного аустенита, который превращается в мартенсит отпуска.

3. Выделение карбидной фазы Fe3C и ее последующая коагуляция.

4. Уменьшение плотности дефектов кристаллического строения.

5. Снимаются внутренние напряжения.

Рассмотрим последовательность процессов при отпуске с повышением температуры: До 800С диффузионная подвижность атомов мала и распад аустенита идет медленно.

Первое превращение при отпуске развивается в диапазоне 80. 2000С и приводит к формированию структуры отпущенного мартенсита — смеси пересыщенного углеродом a — раствора и когерентных с ними частиц e — карбида.

В результате этого существенно меняется тетрагональность мартенсита ( часть углерода выделяется в виде метастабильного e — карбида ), удельный объем, снижаются внутренние напряжения (рис.8).

Второе превращение при отпуске развивается в интервале температур 200. 2600С (3000С) и состоит:

1) в превращении остаточного аустенита в отпущенный мартенсит;

2) в дальнейшем распаде отпущенного мартенсита: уменьшается степень его перенасыщенности до 0,15. 0,2% С, начинается преобразование e — карбида в цементит и его обособление, разрыв когерентности;

3) в снятии внутренних напряжений;

4) в связи с переходом остаточного аустенита в отпущенный мартенсит имеет место некоторое увеличение объема.

Третье превращение при отпуске развивается в интервале 300. 4000С. При этом заканчивается распад отпущенного мартенсита и процесс карбидообразования.

Формируется карбидоферритная смесь, существенно снимаются внутренние напряжения; повышение температуры отпуска выше 4000С активизирует процесс коагуляции карбидов, что приводит к уменьшению дисперсности ферритоцементитной смеси.

Структуру стали после низкого отпуска (до 2500С) называют отпущенным мартенситом. Структуру стали после среднего отпуска 350. 5000С называют троститом отпуска. Структуру стали после высокого отпуска 500. 6000С называют сорбитом отпуска. В стали 65Г после полной закалки в масле и среднего отпуска при 4500С образуется структура тростита.

Состав и группа стали 110Г13

Для некоторых деталей (шары дробильных мельниц и т.к.) используется сталь 110Г13.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector