Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Применение операционных усилителей. Часть 1. Регулирование тока нагрузки на примере светодиодного драйвера

Применение операционных усилителей. Часть 1. Регулирование тока нагрузки на примере светодиодного драйвера

Как известно, — для питания светодиодов требуется стабильный ток. Устройство, способное питать светодиоды стабильным током, называется драйвером светодиодов. Эта статья посвящена изготовлению такого драйвера с использованием операционного усилителя.

Итак, главная идея заключается в том, чтобы стабилизировать падение напряжения на резисторе известного номинала (в нашем случае — R3), включенном в цепь последовательно с нагрузкой (светодиодом). Поскольку резистор включен последовательно со светодиодом, то через них протекает одинаковый ток. Если этот резистор подобран таким образом, что он практически не нагревается, то и сопротивление его будет неизменным. Таким образом, стабилизировав падение напряжения на нём, мы стабилизируем и ток через него и, соответственно ток через светодиод.

Схема регулятора тока нагрузки на ОУ

Причём же здесь операционный усилитель? Да при том, что одним из его замечательных свойств является то, что ОУ стремится к такому состоянию, когда разность напряжений на его входах равна нулю. И делает он это путём изменения своего выходного напряжения. Если разность U1-U2 положительна — выходное напряжение будет возрастать, а если отрицательна — уменьшаться.

Представим, что наша схема находится в некоем равновесном состоянии, когда напряжение на выходе ОУ равно Uвых. При этом через нагрузку и резистор протекает ток Iн. Если по каким либо причинам ток в цепи возрастёт (например, если под действием нагрева уменьшится сопротивление светодиода), то это вызовет увеличение падения напряжения на резисторе R3 и, соответственно, увеличение напряжения на инвертирующем входе ОУ. Между входами ОУ появится отрицательная разность напряжений (ошибка), стремясь скомпенсировать которую, операционник будет уменьшать выходное напряжение. Он будет делать это до тех пор, пока напряжения на его входах не станут равными, т.е. пока падение напряжения на резисторе R3 не станет равным напряжению на неинвертирующем входе ОУ.

Таким образом, вся задача свелась к тому, чтобы стабилизировать напряжение на неинверирующем входе ОУ. Если вся схема питается стабильным напряжением Uп, то для этого достаточно простого делителя (как на схеме 1). Раз делитель подключен к стабильному напряжению, то и выход делителя тоже будет стабильным.

Расчёты: Для расчётов выберем реальный пример: пусть мы хотим запитать два сверхъярких светодиода подсветки сотового телефона Nokia от напряжения Uп=12В (отличный фонарик в машину). Нам нужно получить ток через каждый светодиод 20 мА и при этом у нас имеется выковырянный с материнской платы сдвоенный операционный усилитель LM833. При таком токе наши светодиоды светят гораздо ярче, чем в телефоне, но сгорать и не собираются, значительный нагрев начинается где-то ближе к 30 мА. Расчёт будем вести для одного канала операционника, т.к. для второго он абсолютно аналогичен.

напряжение на инвертирующем входе: U2=Iн*R3

из условия равенства напряжений в состоянии равновесия:

Как выбирать номиналы элементов?

Во-первых, выражение для U1 справедливо только в том случае, если входной ток операционного усилителя = 0. То есть для идеального операционного усилителя. Чтобы можно было не учитывать входной ток реального ОУ, ток через делитель должен быть по крайней мере раз в 100 больше, чем входной ток ОУ. Величину входного тока можно посмотреть в даташите, обычно для современных ОУ она может составлять от десятков пикоампер до сотен наноампер (для нашего случая input bias current max=1 мкА). То есть ток через делитель должен быть по меньшей мере 100..200 мкА.

Во-вторых, с одной стороны — чем больше R3 — тем более наша схема чувствительна к изменению тока, но с другой стороны — увеличение R3 снижает КПД схемы, поскольку резистор рассеивает мощность, пропорциональную сопротивлению. Будем исходить из того, что мы не хотим падения напряжения на резисторе более 1В.

(Вообще же, если хотят побороться за КПД, то R3 выбирают как можно меньше. Предел уменьшения R3 ограничен таким показателем операционника, как напряжение смещения нуля. Для нормальной работы ОУ, R3 выбирают таким, чтобы минимальное падение напряжения на нём было на пару порядков больше напряжения смещения нуля. Подробнее об этом показателе и его влиянии на работу ОУ читайте в статье про дифференциальный усилитель.)

Читайте так же:
Сколько кубов в 50 литровом баллоне пропана

Итак, пусть R1=47кОм, тогда с учётом того, что U1=U2=1В, из выражения для U1 получим R2=R1/(Uп/U1-1)=4,272 -> из стандартного ряда выбираем резистор на 4,3 кОм. Из выражения для U2 находим R3=U2/Iн=50 -> выбираем резистор на 47 Ом. Проверим ток через делитель: Iд=Uп/(R1+R2)=234 мкА, что вполне нас устраивает. Мощность, рассеиваемая на R3: P=Iн 2 *R3=18,8 мВт, что тоже вполне приемлемо. Для сравнения, — самые обычные резисторы МЛТ-0,125 рассчитаны на 125 мВт.

Как уже было отмечено, описанная выше схема рассчитана на стабильное питание Uп. Что же делать, если питание НЕ стабильное. Самым простым решением является замена сопротивления R2 делителя на стабилитрон. Что важно учитывать в этом случае?

Схема регулятора тока на ОУ. Со стабильным опорным уровнем

Во-первых, важно чтобы стабилитрон мог работать во всем диапазоне напряжения питания. Если ток через R1D1 будет слишком маленьким — напряжение на стабилитроне будет значительно выше напряжения стабилизации, соответственно, выходное напряжение будет значительно выше требуемого и светодиод может сгореть. Итак, нужно, чтобы при Uп min ток через R1D1 был больше или равен Iст min (минимальный ток стабилизации узнаём из даташита на стабилитрон).

Во-вторых, при максимальном напряжении питания ток через стабилитрон не должен быть выше Iст max (наш стабилитрон не должен сгореть). То есть

И, наконец, в-третьих, напряжение на реальном стабилитроне не точно равно Uст, — оно, в зависимости от тока, меняется от Uст min до Uст max. Соответственно, падение на резисторе R3 тоже изменяется от Uст min до Uст max. Это так же следует учитывать, поскольку чем больше ΔUст — тем больше ошибка регулирования тока, в зависимости от напряжения питания.

Схема мощного регулятора тока на ОУ

Ну ладно, с небольшими токами разобрались, а что делать, если нам нужен ток через светодиод не 20, а 500 мА, что превышает возможности операционника? Тут тоже всё достаточно просто — выход можно умощнить с помощью обычного биполярного или полевого транзистора, все расчёты при этом остаются без изменений. Единственное очевидное условие — транзистор должен выдерживать требуемый ток и максимальное напряжение питания.

Ну вот, пожалуй и всё. Удачи! И ни в коем случае не выкидывайте старый радиохлам — у нас впереди ещё много прикольных штуковин.

Стабилизатор тока для зарядки аккумулятора — зарядное со стабилизацией тока

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

Простое зарядное устройство стабилизатор тока из подручных материалов

Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.

стабилизатор тока для зарядки аккумулятора

В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:

  • два входа (инвертирующий и неинвертирующий);
  • один выход.

Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.

Зарядное устройство или простой стабилизатор – это прибор, который:

  • сглаживает пульсации сети;
  • поддерживает прямую линию графика тока на одном уровне.

Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.

Читайте так же:
Ремонт бензопилы интерскол своими руками видео

Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.

В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.

Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.

Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.

Сборка устройства

Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

стабилизатор тока для зарядки аккумулятора

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

стабилизатор тока для зарядки аккумулятора

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Описание и применение операционного усилителя LM358. Схемы включения, аналог, datasheet

В этой статье поговорим еще об одном зарядном устройстве для автомобиля. Заряжать будем аккумуляторы стабильным током. Схема зарядного изображена на рисунке 1.

Lm358 схема включения в зарядном устройстве

В качестве сетевого трансформатора в схеме применен перемотанный трансформатор от лампового телевизора ТС-180, но подойдут и ТС-180-2 и ТС-180-2В. Для перемотки трансформатора сначала его аккуратно разбираем, не забыв при этом заметить какими сторонами был склеен сердечник, путать положение U-образных частей сердечника нельзя. Затем сматываются все вторичные обмотки. Экранирующую обмотку, если будете пользоваться зарядным только дома, можно оставить. Если же предполагается использование устройства и в других условиях, то экранирующая обмотка снимается. Снимается так же и верхняя изоляция первичной обмотки. После этого катушки пропитываются бакелитовым лаком. Конечно пропитка на производстве происходит в вакуумной камере, если таких возможностей нет, то пропитаем горячим способом – в горячий лак, разогретый на водяной бане, бросаем катушки и ждем с часик, пока они не пропитаются лаком. Потом даем лишнему лаку стечь и ставим катушки в газовую духовку с температурой порядка 100… 120˚С. В крайнем случае обмотку катушек можно пропитать парафином. После этого восстанавливаем изоляцию первичной обмотки той же бумагой, но тоже пропитанной лаком. Далее мотаем на катушки по… сейчас посчитаем. Для уменьшения тока холостого хода, а он явно возрастет, так как необходимой ферропасты для склеивания витых, разрезных сердечников у нас нет, будем использовать все витки обмоток катушек. И так. Число витков первичной обмотки (см. таблицу) равно 375+58+375+58 = 866витков. Количество витков на один вольт равно 866витков делим на 220 вольт получаем 3,936 ≈ 4витка на вольт.

Читайте так же:
Реостат балластный рб 315

Lm358 схема включения в зарядном устройстве

Вычисляем количество витков вторичной обмотки. Зададимся напряжением вторичной обмотки в 14 вольт, что даст нам на выходе выпрямителя с конденсаторами фильтра напряжение 14•√2 = 19,74 ≈ 20вольт. Вообще, чем меньше это напряжение, тем меньшая бесполезная мощность в виде тепла будет выделяться на транзисторах схемы. И так, 14 вольт умножаем на 4витка на вольт, получаем 56 витков вторичной обмотки. Теперь зададимся током вторичной обмотки. Иногда требуется быстрехонько подзарядить аккумулятор, а значит требуется увеличить на некоторое время зарядный ток до предела. Зная габаритную мощность трансформатора – 180Вт и напряжение вторичную обмотки, найдем максимальный ток 180/14 ≈ 12,86А. Максимальный ток коллектора транзистора КТ819 – 15А. Максимальная мощность по справочнику данного транзистора в металлическом корпусе равна 100Вт. Значит при токе12А и мощности 100Вт падение напряжения на транзисторе не может превышать… 100/12 ≈ 8,3 вольта и это при условии, что температура кристалла транзистора не превышает 25˚С. Значит нужен вентилятор, так как транзистор будет работать на пределе своих возможностей. Выбираем ток равный 12А при условии, что в каждом плече выпрямителя уже будет стоять по два диода по 10А. По формуле:

0,7 умножаем на 3,46, получаем диаметр провода ?2,4мм.

Можно уменьшить ток до 10А и применить провод диаметром 2мм. Для облегчения теплового режима трансформатора вторичную обмотку можно не закрывать изоляцией, а просто покрыть дополнительно еще слоем бакелитового лака.

Диоды КД213 устанавливаются на пластинчатые радиаторы 100×100х3мм из алюминия. Их можно установить непосредственно на металлический корпус зарядного через слюдяные прокладки с использованием термопасты. Вместо 213- х можно применить Д214А, Д215А, Д242А, но лучше всего подходят диоды КД2997 с любой буквой, типовое значение прямого падения напряжения у которых равно 0,85В, значит при токе заряда 12А на них выделится в виде тепла 0,85•12 = 10Вт. Максимальный выпрямленный постоянный ток этих диодов равен 30А, да и стоят они не дорого. Микросхема LM358N может работать с напряжениями входного сигнала близкими к нулю, отечественных аналогов я не встречал. Транзисторы VT1 и VT2 можно применить с любыми буквами. В качестве шунта применена полоска из луженой жести. Размеры моей полоски вырезанной из консервной банки (смотрим здесь)– 180×10х0,2мм. При указанных на схеме номиналах резисторов R1,2,5 ток регулируется в пределах примерно от 3 до 8А. Чем меньше номинал резистора R2, тем больше ток стабилизации устройства. Как рассчитать добавочное сопротивление для вольтметра прочитайте здесь.

Об амперметре. У меня, полоска вырезанная по указанным выше размерам, совершенно случайно имеет сопротивление 0,0125Ом. Значит при прохождении через ее тока в 10А, на ней упадет U=I•R = 10•0,0125=0,125В = 125млВ. В моем случае примененная измерительная головка имеет сопротивление 1200 Ом при температуре 25˚С.

Лирическое отступление. Многие радиолюбители, основательно подгоняя шунты для своих амперметров, почему то никогда не обращают внимание на температурную зависимость всех элементов собираемых ими схем. Разговаривать на эту тему можно до бесконечности, я вам приведу лишь небольшой пример. Вот активное сопротивление рамки моей измерительной головки при разных температурах. И для каких условий рассчитывать шунт?

Читать также: Гидропресс своими руками видео

Lm358 схема включения в зарядном устройстве

Это означает, что ток выставленный в домашних условиях, не будет соответствовать току выставленном по амперметру в холодном гараже зимой. Если вам это по барабану, то сделайте просто переключатель на 5,5А и 10… 12А и ни каких приборов. И не бойся, как бы их не разбить, это еще один большой плюс зарядного устройства со стабилизацией тока заряда.

Читайте так же:
Флюс бура как пользоваться

И так, дальше. При сопротивлении рамки равном 1200Ом и токе полного отклонения стрелки прибора 100мкА нам нужно подать на головку напряжение 1200•0,0001=0,12В = 120млВ, что меньше, чем падение напряжения на сопротивлении шунта при токе 10А. Поэтому последовательно измерительной головке поставьте дополнительный резистор, лучше подстроечный, что бы не мучиться с подборкой.

Монтаж стабилизатора выполнен на печатной плате (см. фото 3). Максимальный ток заряда для себя я ограничил шестью амперами, поэтому при токе стабилизации 6А и падении напряжения на мощном транзисторе 5В, выделяемая мощность при этом равна 30Вт, и обдуве вентилятором от компьютера, данный радиатор нагревается до температуры 60 градусов. С вентилятором это много, необходим более эффективный радиатор. Примерно определить необходимую площадь радиатора можно по диаграмме. Мой вам всем совет — ставьте радиаторы рассчитанные для работы ПП приборов без куллеров, пусть лучше размеры прибора увеличатся, но при остановке этого куллера, ни чего не сгорит.

Lm358 схема включения в зарядном устройстве

При анализе выходного напряжения осциллограмма его была сильно зашумлена, что говорит о нестабильности работы схемы т.е. схема подвозбуждалась. Пришлось дополнить схему конденсатором С5, что обеспечило стабильность работы устройства. Да, еще, для того, что бы уменьшить нагрузку на КТ819, я уменьшил напряжение на выходе выпрямителя до 18В (18/1,41 = 12,8В т.е. напряжение вторичной обмотки у моего трансформатора равно 12,8В). Скачать рисунок печатной платы. До свидания. К.В.Ю.

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

4.07. Источники тока

На рис. 4.9 изображена схема, которая является хорошим приближением к идеальному источнику тока, без сдвига напряжения Uбэ, характерного для транзисторного источника тока. Благодаря отрицательной ОС на инвертирующем входе поддерживается напряжение Uвх под действием которого через нагрузку протекает ток I = UвхR. Основной недостаток этой схемы состоит в том, что нагрузка является «плавающей» (она не заземлена). С помощью такого источника тока нельзя, например, получить пригодный к использованию пилообразный сигнал, напряжение которого отсчитывалось бы относительно потенциала земли. Этот недостаток можно преодолеть, если, например, всю схему (источники питания и все остальное) сделать «плавающей», а нагрузку заземлить (рис. 4.10). Штриховой линией обведен рассмотренный выше источник тока с источниками питания. Резисторы R1 и R2 образуют делитель напряжения для установки тока. Чтобы этой схемы не смущал вас, напомним, что «земля» — это понятие относительное. Любую точку в схеме можно назвать «землей». Представленную схему используют для формирования токов, протекающих через заземленную нагрузку, но ее существенный недостаток в том, что управляющий вход является плавающим, это значит, что выходной ток нельзя задать (запрограммировать) с помощью входного напряжения, отсчитываемого от потенциала земли. Методы устранения этого недостатка изложены в той части гл. 6, где рассматриваются источники питания постоянного тока.

Рис. 4.10. Источник тока с заземленной нагрузкой и плавающим источником питания.

Источники тока для заземленных нагрузок. С помощью операционного усилителя и подключенного к нему транзистора можно построить простой и высококачественный источник тока для заземленной нагрузки; небольшое дополнение к схеме операционного усилителя позволяет использовать на управляющем входе напряжение, измеряемое относительно земли (рис. 4.11). В первой схеме обратная связь создает на резисторе R падение напряжения, равное Uкк — Uвх, которое в свою очередь порождает эмиттерный ток (а следовательно, и выходной ток), равный Iэ = (Uкк — Uвх)/R. При работе с этой схемой не приходится беспокоиться о напряжении Uбэ и его изменениях, связанных с изменениями температуры, Iк, Uкэ и т.п. Несовершенство этого источника тока (не будем принимать во внимание ошибки ОУ: Iсм, Uсвд) проявляется лишь в том. что небольшой базовый ток может немного изменяться в зависимости от напряжения икэ (предполагаем, что операционный усилитель не потребляет входной ток); этот недостаток — небольшая плата за возможность использования заземленной нагрузки; если в качестве транзистора Т1 использовать составной транзистор Дарлингтона, то погрешность будет существенно уменьшена. Погрешность возникает в связи с тем, что операционный усилитель стабилизирует эмиттерный ток, а в нагрузку поступает коллекторный ток. Если в этой схеме вместо биполярного использовать полевой транзистор, то проблема будет полностью решена, так как затвор полевого транзистора тока не потребляет.

Читайте так же:
Флюсовая проволока для полуавтомата

Рис. 4.11. Источники тока с заземлёнными нагрузками, не требующие плавающего источника питания.

В рассматриваемой схеме выходной ток пропорционален величине, на которую напряжение, приложенное к неинвертирующему входу операционного усилителя, ниже, чем напряжение питания Uкк; иными словами, напряжение, с помощью которого программируется работа схемы, измеряется относительно напряжения питания Uкк, и все будет в порядке, если напряжение Uвх является фиксированным и формируется с помощью делителя напряжения; если же напряжение на вход должно подаваться от внешнего источника, то возможны неприятности. Этого недостатка лишена вторая схема, в которой аналогичный первый источник тока с транзистором n-p-n — типа служит для преобразования входного управляющего напряжения (измеряемого относительно земли) во входное напряжение, измеряемое относительно Uкк, для оконечного источника тока. Операционные усилители и транзисторы недороги, поэтому запомните такой совет: не раздумывая, включайте в схему дополнительные компоненты, если они позволяют улучшить ее работу и упрощают разработку.

Упражнение 4.1. Для послелней схемы определите выходной ток для заданного входного напряжения Uвх.

На рис. 4.12 представлен интересный вариант схемы источника тока на основе ОУ и транзисторов. Преимущество этой схемы состоит в том, что базовый ток, приводящий к ошибке в случае использования полевых транзисторов, здесь равен нулю, выходной ток не ограничивается значением Iси(вкл). В этой схеме (фактически — это не источник, а потребитель тока) транзистор Т2 начинает проводить когда через транзистор Т1 протекает ток стока величиной приблизительно 0,6 мА. При минимальном значении Iси для Т1 равном 4 мА, и подходящем значением β для Т2 величина тока, протекающего через нагрузку, может достигать 100 мА и более (для получения больших токов транзистор Т2 можно заменить транзистором Дарлингтона, при этом нужно соответственно уменьшить R1. В данном схеме были использованы полевые транзисторы с p-n — переходом, но еще лучше было бы использовать полевые МОП — транзисторы, так как для ОУ на полевых транзисторах с p-n — переходом требуется расщепленный источник питания, обеспечивающий диапазон напряжения на затворе, достаточный для перехода транзистора в режим отсечки. Ничего не стоит с помощью простого мощного полевого МОП — транзистора (МОП — структура с V-образной канавкой) получить ток по-больше, однако мощным полевым транзисторам присущи большие межэлектродные емкости, а представленная здесь гибридная схема как раз и позволяет при одолеть связанные с этим проблемы.

Рис. 4.12. Источник тока на полевых/биполярных транзисторах, предназначенный для больших токов.

Источник тока Хауленда. На рис. 4.13 показан красивый учебный источник тока. Если резисторы подобраны таким образом, что выполняется соотношение R3/R2 = R4/R1 — то можно показать, что справедливо равенство: Iн = — Uвх/R2.

Рис. 4.13. Источник тока Хауленда.

Упражнение 4.2. Покажите, что приведенное выше равенство справедливо.

Эта схема всем хороша, кроме одного резисторы должны быть точно согласованы, иначе источник тока будет далек от совершенства. Но даже при выполнении этого условия определенные ограничения накладывает коэффициент КОСС операционного усилителя. При больших выходных токах резисторы должны быть не большими, тем самым ограничивается выходной диапазон. Кроме того, на высоких частотах (где, как мы скоро узнаем, усиление в цепи обратной связи невелико) выходной импеданс может существенно уменьшаться — от требуемого бесконечного значения до всего лишь нескольких сотен ом (что соответствует выходному импедансу ОУ с разомкнутой обратной связью). Хоть эта схема и хороша с виду на практике ее используют редко.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector