Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Состав электролита для хромирования

Хромирование

Хромирование применяется для защиты металлов от коррозии и для декоративной отделки поверхности изделий. Химически стойкие хромовые покрытия обладают значительной пористостью и без подслоя не обеспечивают надежной зашиты железа от коррозии, так как в гальванопаре железо — хром железо является анодом. Поэтому обычно хромовые покрытия осаждают на предварительно нанесенные слои меди толщиной 20-40 мкм и никеля 10-15 мкм.

Осажденный на поверхность блестящих медных и никелевых покрытий хром, несмотря на малую толщину слоя, значительно повышает их коррозионную стойкость и придает поверхности изделий красивый внешний вид.

Высокая твердость, низкий коэффициент трения, жаростойкость и хорошая химическая устойчивость обеспечивают деталям, покрытым хромом, высокую износостойкость в особо тяжелых условиях эксплуатации. Хромирование широко применяют для повышения твердости и износостойкости различного мерительного и режущего инструмента, трущихся деталей приборов и машин. Большой эффект дает хромирование пресс-форм при изготовлении изделий из пластмасс. Хромирование применяется также в производстве отражателей; хотя коэффициент отражения света у хрома несколько ниже, чем у серебра, он сохраняет блеск в течение длительного времени. В зависимости от назначения изделий толщина хромового покрытия колеблется от 5 мкм до нескольких сотен.

Будьте внимательны! Компания «ЛВ-Инжиниринг» не предоставляет услуги по нанесению гальванических покрытий! Наша организация осуществляет проектирование гальванических производств, изготовление гальванических ванн и линий из полипропилена, монтаж и пусконаладочные работы по данному направлению.

При проектировании гальванической линии хромирования очень важно правильно пдобрать современные очистные сооружения, так технология очистки сточных вод от хрома впоследствии входит в стоимость готовых изделий.

В зависимости от режима электроосаждения могут быть получены хромовые покрытия с различными свойствами:

при температуре 65-80°С и сравнительно невысоких плотностях тока (15-25 А/дм 2 ) осаждается эластичное и беспористое покрытие, так называемый «молочный хром», отличающееся невысокой твердостью;

при температуре 45-60°С и средних значениях плотностей тока (30-100 А/дм 2 ) хромовое покрытие обладает зеркальным блеском и имеет наивысшую твердость и износостойкость;

при низких температурах (до 40°С) и высокой плотности тока происходит осаждение хромовых покрытий серого цвета, характеризующихся высокой твердостью и хрупкостью.

Для получения твердых блестящих покрытий применяют следующий состав электролита (г/л) и режим хромирования:

Хромовый ангидрид — 150-250 г/л
Кислота серная — 1,5-2,5 г/л
Выход по току = 12-13
Температура = 45-60°С
Плотность тока = 15-50 А/дм 2

Качество получаемых хромовых покрытий зависит от соотношения количества хромового ангидрида и серной кислоты. Величина его должна быть 100:1. Уменьшение отношения (50:1) приводит к ухудшению рассеивающей и кроющей способности. Для обеспечения хорошей прочности сцепления следует выдержать детали в ванне без тока для того, чтобы они приняли температуру электролита и в начальный момент хромирования дать так называемый «толчок тока» на 0,5-I мин, повысив плотность тока в 2-3 раза по сравнению с рабочей, а затем плавно снизить ее до нормального значения.

Увеличение трехвалентного хрома в электролите приводит к ухудшению качества покрытия, которые становятся темными и хрупкими. Примеси железа влияют примерно так же, как и трехвалентный хром. Очень вредной примесью является азотная кислота. При содержании ее в количестве 1 г/л необходимо значительно повышать плотность тока, а при увеличении — нормальное проведение процесса хромирования уже невозможно.

При хромировании применяют аноды из чистого свинца или сплава свинца с 4-6% сурьмы марки. Аноды изготовляют из стержней диаметром 10-15 мм или листов. Растворимые аноды применять нецелесообразно, так как хром растворяется преимущественно в виде трехвалентных ионов. Отношение между поверхностью анодов и катодов должно находиться в пределах от 1:2 до 2:3. Свинцовые аноды в процессе работы покрываются слоем хромовокислого свинца, затрудняющего работу. Поэтому ежедневно рекомендуется очищать их стальными щетками. В перерывах между работой аноды вынимают из ванны и погружают в воду

Дефекты при эксплуатации электролита хромирования и способы их устранения

ДефектПричина дефектаСпособ устранения
На деталях имеются не хромированные участкиНизкая плотность токаДать толчок тока в начале процесса
Взаимное экранирование деталейИзменить положение деталей в ванне
Коричневые пятна на покрытииПримеси железаЗаменить часть электролита новым
Недостаток серной кислотыДобавить серную кислоту
Избыток трехвалентного хромаПроработать электролит под током при большой поверхности анодов
Дендриты хрома на углах и острых краяхВысокая плотность тока на острых краяхЗакруглить края, установить специальные экраны
Отслаивание покрытияПлохая подготовка поверхности деталейУлучшить подготовку
Перерыв тока в процессе хромированияПредотвратить перерывы тока
Недостаточный прогрев деталей перед хромированиемПрогреть детали
Матовые осадки хрома, трудности при полировке деталейНизкая температура электролитаПовысить температуру электролита
Высокая плотность токаСнизить плотность тока
Недостаток хромового ангидридаДобавить хромовый ангидрид
Примеси железаПроработать электролит
Темные осадки, растворение свинцовой обкладки ванныНаличие азотной кислоты в электролитеЗаменить электролит

Для приготовления стандартного электролита хромирования раздробленные куски хромового ангидрида загружают в ванну с водой, подогретой до 60-80°С. Растворение хромового ангидрида ведут при тщательном перемешивании. Так как технический хромовый ангидрид всегда содержит некоторое количество серной кислоты, то перед введением в ванну серной кислоты необходимо произвести анализ на ее содержание. После проведения анализа добавляют недостающее количество серной кислоты и прорабатывают электролит под током.

Читайте так же:
Паяльник для автомобиля на 12 вольт

Процесс хромирования протекает с сильным газовыделением при котором через бортовые отсосы улетучиваются мельчайшие капли электролита в виде тумана. В качестве мер по борьбе с испарением электролита применяют поплавки из полиэтилена, полихлорвинила или другого химически стойкого вещества. Слой поплавков снижает потери электролита, так как пузырьки газа задерживаются и лопаются на поверхности поплавков. При этом слой поплавков уменьшает также расход энергии на подогрев электролита, предохраняя зеркало электролита от остывания. В последнее время для этой же цели применяют специальную добавку «хромин», которая создаст тонкий слой пены на поверхности электролита, препятствуя его испарению.

Саморегулирующийся электролит хромирования

Стандартный электролит хромирования имеет некоторые недостатки. Он очень чувствителен к колебанию температуры, допуская незначительное отклонение (± 2°С) от рабочего режима процесса. Необходимо также поддерживать постоянную плотность тока и следить за соотношением между концентрациями хромового ангидрида и серной кислоты, что связано с частой корректировкой электролита.

Эти недостатки устраняют в саморегулирующемся электролите с автоматически регулируемой концентрацией сульфат ионов. Сульфат ионы вводят в электролит в виде труднорастворимого сульфата стронция, взятого в избытке, с тем, чтобы часть его находилась в виде осадка на дне ванны. По мере уменьшения концентрации ионов SO4 2- в растворе осадок растворяется, пополняя убыль этих ионов. Концентрация сульфат ионов является постоянной и составляет 2,5 г/л. Состав электролита (г/л) и режим хромирования:

Хромовый ангидрид — 260-300 г/л
Стронций сернокислый — 5,5-6,5 г/л
Калий кремнефтористоводородный — 18-20 г/л
Выход по току = 17-19
Температура = 55-65°С
Плотность тока = 40-80 А/дм 2

Электролит мало чувствителен к колебанию температуры и плотности тока и позволяет получать хромовые покрытия е производительностью и 1,5 раза выше, чем в стандартном. Введение в электролит кремнефторида калия способствует стабильности электролита, однако наличие ионов фтора приводит к быстрому разрушению свинцовой футеровки хромовых ванн. Поэтому взамен свинца ванны футеруют керамикой, фторопластом н другими стойкими материалами толщиной 2-3 мм. Из-за разрушающего действия саморегулирующегося электролита аноды изготовляют не из чистого свинца, а из свинцово-оловянного сплава с содержанием олова до 10%. Так как этот электролит оказывает растравливающее действие на поверхность стальных деталей, особенно па внутренние полости и отверстия, то сложнопрофилированные детали не рекомендуется покрывать в саморегулирующихся электролитах.

Разработан саморегулирующийся электролит с добавкой препарата ДХТИ-10, который значительно повышает кроющую и рассеивающую способности электролита.

Из электролитов, не требующих нагревания, применяют тетрахроматный электролит хромирования. Этот электролит имеет повышенную рассеивающую н кроющую способности и обладает высоким выходом по току. В нем можно покрывать сложнопрофилированные детали без вспомогательных анодов. Состав электролита (г/л) и режим хромирования:

Хромовый ангидрид — 350-400 г/л
Кислота серная — 1,5-3,0 г/л
Едкий натр — 40-60 г/л
Выход по току = 25-30
Температура = 15-25°С
Плотность тока = 40-80 А/дм 2

За счет связывания большей части хромовой кислоты едким натром агрессивность электролита резко снижается, и в нем можно непосредственно хромировать детали из стали, латуни, цинковых сплавов и др. Поскольку плотность тока в тетрахроматных электролитах высокая, необходимо интенсивное охлаждение его, с тем, чтобы температура электролита не превышала 25°С.

Покрытие, полученное из тетрахроматного электролита, имеет низкие внутренние напряжения н пониженную пористость, вследствие чего они могут применяться для защиты основного металла без подслоя меди н никеля.

Недостатком тетрахроматного электролита является низкая твердость покрытия (3500-4000 МПа), что не позволяет использовать их для защиты трущихся деталей от механического износа. Кроме того, тетрахроматные электролиты нецелесообразно использовать для декоративной отделки, так как осадки хрома получаются серыми, матовыми и доведение их до высокого блеска с помощью полирования связано с большой трудоемкостью.

Для приготовления тетрахроматного электролита растворяют необходимое количество хромового ангидрида в воде и определяют содержание сульфатов в растворе. В отдельной емкости растворяют едкий натр и осторожно приливают его к раствору хромового ангидрида. После охлаждения раствора в него вводят недостающее количество серной кислоты. Электролит требует проработки под током.

Интенсификация процесса хромирования

Для повышения скорости процесса применяют хромирование в проточном электролите и в ультразвуковом поле. Эти методы позволяют значительно увеличить рабочие плотности тока и получить осадки хорошего качества с более высоким выходом по току.

Хромирование в проточном электролите. Допустимый предел плотности тока при хромировании в проточном электролите зависит от скорости протекания электролита и расстояния между анодом и катодом. Чем больше скорость протекания электролита и расстояние между электродами, тем выше предел плотности тока. Состав электролита (г/л) и режим хромирования:

Хромовый ангидрид — 150 г/л
Кислота серная — 1,5 г/л
Расстояние между электродами = 2,5 мм
Скорость протекания электролита = 10-100 см/с
Плотность тока = 60-160 А/дм 2

Хромирование в ультразвуковом поле. Наложение ультразвукового поля в процессе хромирования повышает плотность тока до 200 А/дм 2 , улучшает кроющую способность электролита. При хромировании в стандартном электролите при плотности тока 100-200 А/дм 2 и температуре 50-60С с наложением ультразвукового поля интенсивностью 2-3 Вт/см 2 получают осадки повышенной твердости и высоким выходом по току. При хромировании и тетрахроматном электролите с добавками солей кальция при плотности тока до 200 А/дм 2 и интенсивности ультразвукового поля 1,0-1,5 Вт/см 2 получаются осадки с микротвердостью 6000-11000 МПа; выход по току при этом составляет 40%, Применение ультразвука рекомендуется также при непосредственном хромировании алюминиевых сплавов без промежуточного подслоя.

Читайте так же:
Регулятор напряжения на динисторе

Снятие дефектных хромовых покрытий

Удаление дефектных хромовых покрытий с поверхности детали осуществляют несколькими способами: химическим растворением хромового покрытия, нанесенного на детали из стали, меди, латуни, никеля в 10-20% растворе соляной кислоты, но при этом подтравливается сталь; электрохимическим растворением хромового покрытия с деталей из стали, латуни и меди в 10-15% растворе едкого натра при анодной плотности тока 10-20 А/дм 2 и температуре 25-З0°С. В качестве катода применяют сталь. Электролит не действует на сталь. Для снятия хромового покрытия с алюминия и цинковых сплавов вместе с подслоем никеля рекомендуется анодное растворение в 60% растворе серной кислоты с добавкой глицерина при плотности тока 5-10 А/дм 2 .

Полезная инфа о хромировании

Так как олдскул ассоциируется зачастую с блестючками, в виде хром-пакетов, и, к сожалению, на многих машинах не хватает хрома, предлагаю ознакомиться с собранными мною статьями воедино. Сразу говорю, букаф будет много, и стать ориентированна на хромирование крупногабаритных деталек)
Как многие знают, существует 2 приспособления для медирования, хромирования, цинкования и никелирования, это — гальваническая ванна и кисть . Т.к хромирование больших деталей ( дисков, бамперов и тд) в ваннах — очень затратно по реактивам ( представьте какая ванна должна быть, чтобы туда поместить целый бампер), хочу сделать кисть. Конструкция — нехитрая, предлагаю в этом убедиться)

Устройство представляет собой следующее. Основа его цилиндр 1 (смотри рисунок) из прозрачной пластмассы. Сверху у цилиндра 1 приклеена крышка 2. На ней имеются заливное отверстие 3 с пробкой и металлический контакт 4, вклеенный в крышку.
Снизу в цилиндр 1 вклеена (клей «Момент») щетина 5 от кисти, затянутая шпагатом и обвернутая несколькими витками свинцовой проволоки 6. Конец этой проволоки припаян к контакту 4. Вместо свинцовой проволоки можно использовать узкую полоску свинца, вырезанную из оболочки кабеля.
Выше над щетиной 5 вклеена мембрана 7, представляющая собой кружок пенопласта (толщиной 8-10 мм), в котором проделано несколько мелких сквозных отверстий.
В цилиндр заливают электролит. К устройству подключают зарядный агрегат для аккумуляторов, позволяющий получить силу тока до 5 А.
Плюс подключают к контакту 4, минус к детали, которую покрывают металлом.
Через мембрану 7 и щетину 5 электролит понемногу выходит наружу. В это время своеобразной кистью натирают поверхность детали, при этом на ней начинает появляться пленка металла. Электролит собирают и еще раз используют, разбавляя его свежим электролитом.
Необходимо отметить, что качество подготовки деталей должно быть высоким (шлифовка, полировка, химическое обезжиривание, промывка дистиллированной водой).

Про электролиты для разных способов обработки (цифры — г/л)

Электролит для меднения

Медный купорос (сернокислая медь)
200

Этиловый спирт или фенол
1-2
Электролит для никелирования

Хлористый натрий
5
Электролит для хромирования

Серная кислота (уд. в. 1,84)
2,5
Электролит для цинкования

Борная кислота
20
Электролит для серебрения

Хлористое серебро свежеосажденное
3—15

Сода кальцинированная
20—25
Электролит для золочения

Тут нужно рассмотреть разные виды хромового покрытия, так как в зависимости от концентрации веществ и плотность тока можно получить широкую гамму покрытия, как по оттенку, так и по износостойкости.

Декоративное хромовое покрытие получаеться при использовании электролита следующего состава, электролит состоит из; 350 массовых частей (м.ч.) хромового ангидрида, 3,5 м.ч. серной кислоты и 100 м.ч. воды. Температура электролита при хромировании должна быть 35÷40град. С, а плотность тока – 10÷15 А/дм2.

Износостойкое хромовое покрытие применяется для обработки деталей двигателей, редукторов, гидравлики и прочих механизмов. Его получают используя электролит следующего состава: 150 м.ч. хромового ангидрида, 1,5 м.ч. серной кислоты и 100 м.ч. воды. Температура электролита 50÷55ºС, плотность тока 45÷100 А/дм2.

Темно-голубое декоративно-защитное покрытие получается, используя электролит такого состава: 350 м.ч. хромового ангидрида, 3,5 м.ч. серной кислоты, 1 м.ч. желтой кровяной соли и 100 м.ч. воды. Температура электролита 25÷30ºС, плотность тока 5÷10 А/дм2.

Агатовое, темно-синее декоративно-защитное покрытие получается если применять электролит, состоящий из 40 м.ч. хромового ангидрида, 10 м.ч. уксуснокислого бария и 100 м.ч. воды. Температурный режим электролита 15ºС, плотность тока 25 А/дм2.

Черное декоративно-защитное покрытие получается если использовать электролит следующего состава: 250 м.ч. хромового ангидрида, 8 м.ч. уксуснокислого кальция и 100 м.ч. воды. Температурный режим электролита 25÷30ºС, плотность тока до 100 А/дм2.

Мягкое декоративное покрытие получается при обработке в электролите следующего состава: состоящем из 250 м.ч. хромового ангидрида, 7÷10 м.ч. сернокислого хрома, 3 м.ч. борно-фтористоводородной кислоты, 100 м.ч. воды, однако можно применять и другой состав: 250 м.ч. хромового ангидрида, 3,5 м.ч. фтористого натрия и 100 м.ч. воды. Для обоих электролитов плотность тока составляет 4÷5 А/дм2, а температура 18÷20ºС.

Электролиты нельзя долго хранить, поскольку при этом теряются первоначальные качества.

Чугунные и стальные изделия перед обработкой подогревают до рабочей температуры электролита, медные и латунные – предварительно прогревают в горячей воде, а затем под напряжением погружают в гальваническую ванну.

Алюминий и его сплавы перед хромированием покрывают прочной пленкой другого металла. Для этого нужно изделие, поверхность которого приготовлена для хромирования, погрузить в раствор такого состава:
хлорное железо – 25÷35 г, концентрированная соляная кислота – 15÷20 г, вода – 1000 г. Деталь выдерживают в этом растворе 1÷2 мин, затем промывают водой и тут же приступают к хромированию.
Так же можно еще воспользоваться другим раствором: сернокислый цинк — 200 г, едкий натр – 200 г, вода – 1000 г. В таком растворе алюминиевую деталь необходимо выдержать 2÷3 мин, после этого промыть водой. В таком случае на поверхности изделия образуется тонкий промежуточный слой цинка, который обеспечит хорошее сцепление хромового покрытия с деталью.

Читайте так же:
Простейшая схема индукционного нагревателя своими руками

Иногда нужно обновить хромовое покрытие на изделии. Для этого изделие нужно погрузить в электролит и на протяжении 30 с пропускать ток обратного направления. При этом поверхность старого хромового покрытия слегка растворяется и будущее хромовое покрытие надежно сцепляется со старым. При нанесении хромовых покрытий плотность тока доводят до расчитаной на протяжении 3÷5 мин.

После того как гальванический процесс завершен, изделие вынимают из электролита, промывают в теплой воде, потом нейтрализуют в 3 %-ном растворе пищевой соды, после этого снова промывают в горячей воде и сушат. Если же нанесено твердое износостойкое покрытие, то изделие необходимо обязательно прокипятить в течение 1÷1,5 ч в большом объеме дистиллированной воды, в завершении его помещают на 2÷4 часа в сушильный шкаф с температурой 110÷130ºС.
Следует иметь в виду, что, хотя растворы и не содержат сильно ядо­витых веществ, обращаться с ними во избежание ожогов и отравления следует с осторожностью. Растворы лучше всего хранить в темной стекляняной посуде с притертой пробкой.

Так же следует учитывать удельный вес кислот, в зависимости от температур. Чем больше температура — тем меньше удельный вес . 98% раствор серной кислоты имеет как раз тот удельный вес, что нам нужен.

Так же нужно отдельно рассказать про реактивы, которыми нужно обрабатывать деталь до и после гальваники.

Одним из самых важных условий получения качественного гальванического покрытия является предварительная подготовка пескоструйка, шлифовка, обезжиривание и изделия.

Шлифовку осуществляют механическим способом с помощью карцовочной щетки, шлифовочных паст и наждачных шкурок.

Обезжиривание подготавливаемых деталей производят в органических растворителях: спирте, бензине, ацетоне, бензоле, трихлорэтилене. Подготавливаемую деталь тщательно промывают в растворителях, обращая внимание на труднодоступные места к которым сложно подобраться. Показатель качественного обезжиривания — хорошее смачивание водой поверхности детали.
Изделия из чугуна и стали очень хорошо обезжириваются с помощью указанных растворов:

Едкий натр… 10—20 г
Кальцинированная сода… 50 г
Жидкое стекло … 5—15 г
Вода… 1000 г

Едкий натр …50 г
Кальцинированная сода…30 г
Фосфорнокислый натрий…30 г
Жидкое стекло …5 г
Вода… 1000 г

Температура для растворов при обработки детали должна быть 60÷90 град. С. Работы нужно выполнять в защитных перчатках и фартуке, не допускать, чтобы капли раствора попадали на кожу и в глаза.

Для изделий из цветных металлов существуют следующие растворы:

Фосфорнокислый натрий… 10—20 г
Хозяйственное мыло… 10—20 г
Вода… 1000 г

Едкий натр …10 г
Фосфорнокислый натрий… 50—60
Вода… 1000 г

Рабочая температура первого раствора — 90град. С, а второго — 60град. С.

Так же нужно деталь декапировать

Декапирование – процесс снятия окисной пленки с поверхности металлической детали перед гальванической обработкой. В домашней мастерской можно применять такие декапирующие растворы:

Концентрированная серная кислота… 70—80
Хромпик … 2—3
Вода… 100

Соляная или серная кислота…5
Вода… 100

Ах, да. Возникает вопрос. Где взять реактивы?))
Ну, вроде все, сори за многабукаф. В ближайшее время соберем установку и попробуем ченить хромануть.

Электролиты для хромирования

Электролиты для хромирования

Основными составляющими электролитов являются хромовый ангидрид и серная кислота. Хромовый ангидрид СгО3 — плавленая кристаллическая масса вишнево-красного цвета. Растворимость в воде при 20 °С до 625 г/л. Хромовый ангидрид, оставленный на воздухе в барабане или в кусках на полу, легко соединяется с влагой воздуха, превращаясь в хромовую кислоту, и как энергичный окислитель быстро разрушает все органические вещества, с которыми он соприкасается.

Технический хромовый ангидрид может содержать до 0,4 % SO4 в пересчете на H2SO4, что следует учитывать при приготовлении и корректировании ванн хромирования. Поэтому при зарядке сначала в ванну закладывают полностью расчетное количество хромового ангидрида, заливают водой до заданного объема и дают полностью раствориться. После перемешивания раствора отбирают пробу для анализа на содержание иона SO 4- и лишь после получения результата вводят в ванну недостающее количество серной кислоты.

Серная кислота H2SO4 (ГОСТ 4204) — химически чистая, вязкая бесцветная жидкость, плотность — 1,84 г/см 3 . Приливание кислоты в ванну хромирования следует производить в расчетном количестве, при энергичном перемешивании.

Стандартный электролит

Ориентировочный состав стандартного электролита содержит, г/л:

хромовый ангидрид — 150-250; серная кислота — 1,5-2,5.

При наличии целого ряда ценных свойств стандартный электролит обладает и некоторыми недостатками. Так, он чувствителен к колебаниям температуры, допуская отклонения от рабочего интервала температур лишь в пределах ±2 °С в течение всего времени процесса хромирования, длящегося обычно несколько часов. Если отклонение от заданной температуры превысит норму во время осаждения, то возникнут внутренние напряжения в хромовом покрытии, которые могут привести к его отслаиванию. Аналогичное действие оказывают и колебания плотности тока.

Читайте так же:
Частые поломки микроволновых печей

Кроме того, поддержание правильного соотношения между концентрациями хромового ангидрида и серной кислоты, равного 100:1, связано с частыми корректированиями и с введением добавок серной кислоты. Катодный выход по току весьма низок и находится в пределах 12-13 %, вследствие чего необходимо затрачивать большое количество времени и электроэнергии для получения износостойкого слоя хрома достаточной толщины.

Саморегулирующийся электролит

Этих недостатков лишен «саморегулирующийся» электролит, который имеет следующий состав (г/л) и режим работы (ГОСТ 9.047):

хромовый ангидрид — 225-300; сернокислый стронций — 5,5-6,5; кремнефтористый калий — 18-20; хром трехвалентный — 3-10; температура, °С — 55-65; плотность тока, А/дм 2 — 40-70; выход по току, % — 18.

Характерной особенностью этого электролита является, прежде всего, постоянная концентрация аниона SO 2- , составляющая 2,5 г/л. Это явление связано с тем, что сернокислый стронций и кремнефтористый калий имеют весьма ограниченную растворимость в воде и в рабочем диапазоне температур поддерживают в растворе заданную концентрацию аниона SO 2- . Так как в электролит вводится заведомо большее количество сернокислого стронция и кремнефтористого калия, то частично они находятся в виде осадка на дне ванны и частично — в растворе в виде ионов. По мере уноса раствора осадок растворяется и пополняет убыль аниона SO 2- .

Электролит менее чувствителен к возможным колебаниям температур и плотностей тока, чем стандартный, и, следовательно, не вызывает отслаивания хрома при невольных нарушениях режима. Наконец, электролит позволяет при той же силе тока, что и в стандартном, производить осаждение хрома в 1,4—1,5 раза быстрее за счет более высокого выхода по току.

Несмотря на свои высокие достоинства, саморегулирующиеся электролиты не получили широкого применения, так как имеют весьма существенные недостатки, основным из которых является наличие агрессивного аниона F — в составе электролита. Это обстоятельство приводит к быстрому разрушению свинцовой футеровки хромовых ванн, особенно по сварочным швам. В результате, взамен рольного свинца футеровку ванн необходимо производить керамикой, винипластом, пентапластом, поливинилхлоридом и прочими материалами. По этой же причине непригодны и свинцовые аноды. Взамен им приходится применять аноды из свинцово-оловянного сплава, с содержанием олова — от 6 до 10 %.

Тетрахроматный электролит

Из электролитов, не требующих подогрева, некоторое промышленное применение получил так называемый тетрахроматный электролит, для которого рекомендуются следующий состав (г/л) и режим работы (ГОСТ 9.047):

хромовый ангидрид — 350—400; серная кислота — 2,5—3,0; едкий натр —40—60; хром трехвалентный — 10—15; температура, °С — 15—30; плотность тока, А/дм 2 — 10—60; выход по току, % — 25—30.

Электролит отличается повышенной рассеивающей способностью, но хромовые покрытия имеют серый, матовый вид и в 2— 3 раза меньшую твердость, чем осадки из стандартного электролита. Поэтому хромовые покрытия из тетрахромового электролита применяют лишь в качестве защитного покрытия с использованием меди, никеля или цинка в качестве подслоя.

Для скорейшего образования трехвалентного хрома в необходимом количестве для правильной эксплуатации в представленный электролит вводят при приготовлении до 0,5-0,6 г/л сахара. Электролит менее агрессивен, чем стандартный, и в нем можно непосредственно хромировать детали из латуни, цинковых сплавов и других химически нестойких металлов. Так как электролит не требует подогрева, то в качестве поплавков для предохранения электролита от уноса в вентиляционные отсосы можно использовать кусочки дерева, пропитанные парафином. В связи с тем, что плотности тока при хромировании весьма велики, электролит может перегреваться выше допустимых температур (23-24 °С).

Электролит для реверсирования

При электроосаждении периодическое изменение направления постоянного тока существенно изменяет некоторые свойства покрытий. Одна из характерных особенностей хромирования с применением реверсирования тока — возможность получения покрытия толщиной 800 мкм и более с малыми внутренними напряжениями. Хромирование проводят при следующем составе (г/л) и режимах:

хромовый ангидрида — 200-250; серная кислота — 2-2,5; температура электролита, °С — 50-60; катодная плотность тока, А/дм2 — 120 длительность катодного периода, мин — 1-5; длительность анодного периода, с — 5-25.

Реверсирование позволяет ускорить процесс осаждения хрома в 1,5-2 раза по сравнению с обычными электролитами.

При покрытии деталей хромом в проточном электролите при тех же плотностях тока возможно получить осадок высокого качества и значительной толщины. Процесс нанесения покрытия при этом ускоряется в 6-10 раз по сравнению с обычным хромированием. С увеличением скорости протекания электролита от 0 до 200 см/с микротвердость осажденного металла повышается от 7000 до 10000 МПа при ведении процесса с плотностью тока 45 А/дм 2 и температуре электролита 45 °С. Равномерность осаждения и износостойкость хрома при наращивании в проточном электролите выше, чем при хромировании в непроточном электролите. Особенно эффективно применение проточного электролита для наращивания внутренних поверхностей деталей.

К типу многослойных покрытий может быть отнесено так называемое двухслойное хромовое покрытие. Последнее получают при нанесении различных осадков хрома с изменяющимися свойствами. Если необходимо защитить деталь от коррозии при одновременном увеличении ее износостойкости, наносят два слоя хрома: нижний — беспористый молочный и верхний — блестящий.

Состав электролита для хромирования

Представлены результаты исследований свойств разбавленного саморегулирующегося электролита, содержащего нанопорошок оксида алюминия, и хромовых покрытий, полученных в данном электролите, в сравнении со свойствами хромовых покрытий, полученных в стандартном электролите. Проведенные исследования показали, что свойства хромовых покрытий, получаемых в разбавленном саморегулирующемся электролите в присутствии нанопорошка оксида алюминия, не уступают, а по отдельным показателям превосходят свойства покрытий из стандартного электролита.

Введение

Читайте так же:
Стол верстак складной своими руками

В связи с повышенными экологическими требованиями к охране окружающей среды в настоящее время активно разрабатываются низкоконцентрированные электролиты без потери функциональных свойств покрытий и позволяющие улучшить условия труда [1–4]. Выход по току в таких электролитах может достигать 30–37%, они характеризуются повышенной рассеивающей и кроющей способностью при осаждении как на постоянном, так и импульсном токе. В зависимости от амплитуды анодной или катодной составляющих импульсного тока, скважности микротвердость покрытий может превышать 12000 МПа. Уменьшение концентрации хромового ангидрида приводит к его меньшему уносу с вентиляцией или промывными водами, тем самым облегчая нагрузку на очистные сооружения, но в то же время требуется более частая корректировка состава [5]. В настоящее время интенсивно ведутся исследования по подбору оптимальных токовых, температурных режимов хромирования в разбавленном электролите и их влиянию на функциональные свойства: износостойкость, микротвердость, внутренние напряжения, коррозионную стойкость. Сообщается, что в таких электролитах с хорошей рассеивающей способностью покрываются штоки гидроцилиндров горнообогатительной, строительной техники длиной до 5 м и диаметром до 0,5 м [6–8]. Данные покрытия не уступают покрытиям из стандартного электролита и выдерживают все соответствующие испытания на износ, разрыв, твердость и т. п. [9, 10]. Промышленное использование разбавленных электролитов открывает новые возможности в области как практического использования, так и охраны окружающей среды.

В ВИАМ длительное время проводятся исследования электролитов хромирования с нанопорошками оксидов металлов. Разработанные электролиты превосходят по своим показателям стандартный электролит хромирования [11–16].

Целью данной работы является разработка технологического процесса хромирования в разбавленных электролитах, содержащих нанопорошок оксида алюминия, позволяющего получать покрытия, по своим свойствам не уступающие покрытиям, получаемым в стандартных хромовых электролитах.

Материалы и методы, результаты

Разработка новых материалов и покрытий требует проведения глубоких системных исследований как электролитов, так и свойств покрытий, а также влияния процесса осаждения покрытий на основу [17].

Исследование коэффициента светопропускания электролитов – суспензий в разбавленном саморегулирующемся электролите хромирования – проводили в зависимости от концентрации введенного нанопорошка оксида алюминия. Замеры проводили на фотометре фотоэлектрическом RAR-3-01-«ЗОМЗ».

Плотность разбавленного саморегулирующегося электролита хромирования в зависимости от температуры и концентрации наночастиц оксида алюминия измеряли ареометром АОН-1 (ГОСТ 18481–81).

Оценку удельной электропроводности (УЭП) электролитов проводили с помощью кондуктометра радиочастотного бесконтактного типа КРАБ-Д №0647. Погрешность показаний прибора, проверенная на стандартном растворе хлористого калия в соответствии с ГОСТ 22171, составила 6%. Исследуемый температурный интервал электролитов выбран исходя из рабочих диапазонов электрохимических процессов осаждения покрытий, а за величину УЭП принимали среднее значение измеренной УЭП, полученной в режиме «нагрев–охлаждение».

Выход по току, т. е. отношение фактически осажденного определенным количеством электричества хрома к его теоретическому эквиваленту (отнесенному к тому же количеству электричества), выраженное в процентах, определяли по формуле (1):

где η – выход по току, %; I – сила тока, А; T – продолжительность электролиза, мин; а – масса электрода до покрытия, г; b – масса электрода после покрытия, г; 0,324 – электрохимический эквивалент хрома.

В качестве электрода для оценки величины выхода по току использовали стальной шарик Ø19 мм (площадь поверхности составляет 0,1 дм 2 ).

Скорость осаждения кластерного хромового покрытия Vос в мкм/мин определяли по формуле (2):

где δ – толщина покрытия, мкм; τ – время осаждения покрытия, мин.

Контроль времени осуществляли с помощью секундомера.

В качестве объекта исследований выбрана конструкционная сталь 30ХГСА.

Электроосаждение покрытия производили в разбавленном саморегулирующемся электролите хромирования (РСЭХ) следующего состава: 140–170 г/л хромового ангидрида, 6 г/л стронция сернокислого, а также нанопорошок оксида алюминия, имеющий следующие характеристики: форма частиц – сферическая, среднее значение диаметра частиц 40 нм, удельная поверхность ≥30 м 2 /г. Режим осаждения хромового покрытия: плотность тока 40–80 А/дм 2 , температура 48–62°С.

Перед хромированием образцы подвергали химическому обезжириванию и анодному декапированию в электролите хромирования вышеуказанного состава. Режим декапирования: плотность тока 50 А/дм 2 , температура 48–62°С.

Микротвердость покрытия измеряли микротвердомером ПМТ-3М по ГОСТ 9450–76. Пористость покрытия оценивали методом наложения фильтровальной бумаги по ГОСТ 9.302–88. Испытания на прочность сцепления покрытия с основой проводили методами нагрева и полирования по ГОСТ 9.302–88. Шероховатость основы и покрытия оценивали профилометром SJ-210.

Толщину покрытия замеряли многофункциональным прибором измерения геометрических параметров Константа К6.

Исследование коэффициента светопропускания РСЭХ

Для исследований были приготовлены разбавленные электролиты хромирования без нанопорошка и электролиты, содержащие 5 и 10 г/л оксида алюминия.

В качестве холостой пробы для фотометрических измерений использовали электролит без нанопорошка после шестичасового отстаивания. Продолжительность отстаивания холостой пробы определяли по результатам сравнительных фотометрических испытаний растворов разбавленных электролитов хромирования, подвергнутых механическому перемешиванию, относительно этой холостой пробы. Данные измерения представлены в табл. 1.

Коэффициент светопропускания разбавленного электролита хромирования

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector