Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговый двигатель

Шаговый двигатель

Шаговые электродвигатели (ШД) используются там, где нужно позиционирование повышенной точности.

Что такое шаговый двигатель? Это синхронный двигатель без щеток, имеющий несколько обмоток. Для фиксации ротора в определенной позиции ток подается в одну из обмоток статора. По поступлении тока в другую обмотку ротор меняет позицию. Это и есть «шаг».

Типы ШД и их устройство

  1. С переменным магнитным сопротивлением. На статичной части таких ШД есть несколько полюсов. Ротор – зубчатой формы из мягкого материала, ненамагниченный. Если, к примеру, статор 6-полюсный, а ротор из 4 зубцов, то независимых обмоток на двух противоположных статорных полюсах будет 3. Шаг мотора будет равен 30 ° .
  2. С постоянными магнитами в роторе. Прямолинейные полюсы параллельны оси двигателя. Поскольку магнитный поток мощнее, крутящий момент на порядок выше, чем в ШД первого типа. Шаг такого мотора – от 7,5 до 15°.Может быть от 24 до 48 шагов на оборот.
  3. Гибридные ШД (ГШД). Установка зубцов в направлении оси сокращает величину шага. Крутящий момент и скорость возрастают. Обычно бывает от 100 до 400 шагов за оборот при угле шага 0,9-3,6°. Наиболее распространен биполярный ШД nema. Только в гибридных ШД применяется режим микрошага. Управление обмотками независимое. Плавность вращения подвижной части повышена. Возможны 51200 шагов за оборот. Точность позиционирования оптимальна. Обеспечивается более низкая магнитная проводимость зазоров относительно удельной проводимости зубцов.

ШД по типу обмоток подразделяются на:

  • Биполярные с одной обмоткой для каждой фазы. Переплюсовка драйвером изменяет направление магнитного поля.
  • Униполярные. В каждой фазе одна обмотка, но из середины каждой обмотки имеется отвод. Направление поля меняется за счет переключения используемой половины обмотки. Драйвер имеет только 4 ключа.

Характеристики ШД

  1. Крутящий момент. Его измеряют в кг-сила-см. Чем выше показатель зависимости вращательного момента от частоты вращения, тем быстрее ШД набирает обороты после включения.
  2. Удерживающий момент или сила блокирования ротора статором при включенном, но не запущенном моторе. Его измеряют в унциях-на-дюйм.
  3. Тормозящий или стопорный момент, т.е. сила, которая удерживает ротор от вращения без подачи тока. В ГШД эта величина в 10 раз меньше величины силы удерживания ротора от вращения при полной подаче тока. Измеряется в унциях-на-дюйм.
  4. Номинальное напряжение, зависящее от индуктивности обмоток. Указывается в вольтах. По нему определяют оптимальное напряжение для подачи в мотор. Наилучшее напряжение превышает номинальное. Превышение силы подаваемого тока ведет к перегреву и поломке двигателя. При недостаточном напряжении он не запустится. Оптимальную силу тока определяют по формуле U = 32 x√ L. L – индуктивность обмотки, а U – искомое значение.
  5. Диэлектрические испытания. По максимальному напряжению, которое выдерживает обмотка в течение определенного времени, определяют сопротивление мотора перегрузкам.
  6. Момент инерции ротора – это скорость разгона ШД, которую измеряют в грамм-квадратных см.
  7. Число полных шагов за оборот. Чем оно больше, тем мощнее и быстрее мотор.
  8. Длина корпуса без учета вала и общая масса или вес изделия. По габаритам и массе определяют, когда нужен компактный двигатель, а когда – крупнее и мощнее.

К примеру, в ШД PL57H41 PL57 – ширина-высота (диаметр) по квадратному фланцу 57 мм, H41 – длина двигателя без вала, равная 41 мм. Диаметр двигателя влияет на все его моменты больше, чем длина.

Инкодеры, драйверы и подключение

Специальные драйверы подключают к компьютерному LTP-порту и посредством их управляют ШД. Драйвер – это практически блок управления ШД. В шаговых двигателях для ЧПУ к драйверу присоединяют 4 вывода ШД и управляющие провода с контроллера ЧПУ, и плюс и минус с блока питания. Поступая в драйвер, сигналы контроллера управляют переключением ключей силовой схемы питающего напряжения. Через эти ключи питающее напряжение идет на двигатель.

Максимальный выдаваемый на выводы для обмоток мотора ток нужного напряжения – основной критерий подбора драйвера. Идущий с драйвера ток не должен быть ниже тока, потребляемого мотором. Параметры выходного напряжения выставляются переключателями на драйвере.

Читайте так же:
Напильник для дрели по металлу

В двигателе может быть от 4 до 6 проводов, и от их количества зависит порядок подключения ШД. Биполярные механизмы сочетаются только с 4-проводными двигателями.

На каждые 2 обмотки приходится 2 провода. Самые мощные 6-проводные моторы могут подключаться и к биполярным, и к униполярным устройствам, и в них на каждую обмотку приходится средний провод или центр-кран и 2 провода. В униполярных моторах на каждую обмотку приходятся 3 провода. Два из них подсоединяют к транзисторам, а центр-кран – к источнику питания.

В 5-проводных ШД центральные провода вместе с остальными входят в общий кабель. Предпочтительно найти средний провод и соединить его с другими проводниками.

Датчики, подающие сигналы программному обеспечению, называют энкодерами и часто применяют с ШД. Энкодер нужен, когда налицо нелинейная зависимость от количества шагов.

Области использования, достоинства и недостатки

Шаговые двигатели для ЧПУ широко применяются в координатных столах и системах автоматизации. Панелям управления, программирования и станкам с ЧПУ не обойтись без ШД.

ШД – достойная альтернатива серводвигателю, поскольку, в отличие от него:

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Статья относится к принтерам:

Добрый день 3д печатники и ‘колхозники’.

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4.

Шаговый униполярный двигатель NEMA 23 57HM56-2006 имеет шесть проводов, и что бы подключить его к Ramp 1.4 или любой другой плате нам потребуется переделать его из униполярного в биполярный.

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Шаговый униполярный двигатель NEMA 23 57HM56-2006 имеет ток 2 А, поэтому обычный драйвер шагового двигателя A4998 нам не подойдёт. Я буду использовать драйвер ШД TB6600 и плату MKS CD 57/86, что бы подключить его к ramps.

Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля должна переполюсовываться драйвером. Для такого типа двигателя требуется мостовой драйвер, или полумостовой с двухполярным питанием. Всего биполярный двигатель имеет две обмотки и, соответственно, четыре вывода.

Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера. Драйвер должен иметь только 4 простых ключа. Таким образом, в униполярном двигателе используется другой способ изменения направления магнитного поля. Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов. Иногда униполярные двигатели имеют раздельные 4 обмотки, по этой причине их ошибочно называют 4-х фазными двигателями. Каждая обмотка имеет отдельные выводы, поэтому всего выводов 8. При соответствующем соединении обмоток такой двигатель можно использовать как униполярный или как биполярный. Униполярный двигатель с двумя обмотками и отводами тоже можно использовать в биполярном режиме, если отводы оставить неподключенными.

Если сравнивать между собой биполярный и униполярный двигатели, то биполярный имеет более высокую удельную мощность. При одних и тех же размерах биполярные двигатели обеспечивают больший момент.

На схеме ниже показаны два двигателя. Слева униполярный, 6 выводов. Справа биполярный, 4 вывода.

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Аналогичная схема ниже, но у же с буквенным обозначением выводов.

Слева биполярный, справа униполярный двигатель.

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Исходя из схем выше, возможно два варианта переделки униполярного двигателя в биполярный двигатель.

Я соберу тестовый стенд для наглядности, который включает в себя: ramps 1.4, arduino mega 2560, драйвер шагового двигателя TB6600, плата MKS CD 57/86 для внешнего драйвера ШД TB6600, LCD Display 2004, шаговый двигатель NEMA 23 57HM56-2006.

Читайте так же:
Ножи для косы штиль

1) Первый вариант. Подключаем двигатель к драйверу не используя центральные выводы в обмотках, то есть желтый и белый. Таким способом подключения мы получим высокий момент.

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Пошаговая инструкция для чайников :).

1) Устанавливаем плату MKS CD 57/86 в штатный разъем ramps 1.4 для шагового драйвера, соблюдая полярность.

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Пошаговая инструкция уже для опытных мейкеров 8).

1) Устанавливаем плату MKS CD 57/86 в штатный разъем ramps 1.4 для шагового драйвера, соблюдая полярность.

2) Подключаем драйвер шагового двигателя TB6600 к плате MKS CD 57/86 кабелем с разъемом PH-4 и PH-4.

3) Подключаем шаговый двигатель NEMA 23 57HM56-2006 к драйверу ШД TB6600. Зеленый провод в разъём 1A, желтый в разъём 1B, белый в разъём 2A, красный в разъём 2B. Черный и синий провода лучше заизолировать, не ну если Вам нравится прыгать с бубном то не делайте этого.

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Подключение униполярного шагового двигателя NEMA 23 57HM56-2006 к RAMPS 1.4

Таким образом, подключить униполярный шаговый двигатель к ramps 1.4 не так уж и сложно, достаточно немного знать теории и быть внимательным. Надеюсь, что теперь Вам помощь бубна в этой теме не потребуется ;).

Подключение шагового двигателя. Контроллер L298

Мы подключили к нашему контроллеру обычные двигетели постоянного тока. С их помощью можно, например двигать мобильную платформу на колесном или гусеничном ходу или совершать простейшие действия (типа открытия двери или поднятия штор). Вот только регулировать вращение этих двигателей можно только подавая на них определенное напряжение. И если мы, например, подадим 100% мощности на одну секунду, мы не можем быть уверены, что за это время двигатель повернет вал, например, на 100 оборотов. Ведь нагрузка может меняться, а соотвтетственно и скорость вращения при той-же заданной мощности. В случае визуального управления роботом это не проблема – увидел, что робот проехал нужную дистанцию – подал команду на остановку. Но мы веть хоти создавать именно автоматические устройства, которые не будут ребовать посоянного внимания. Тут есть несколько вариантов:

Можно применять специальные датчика (энкодеры), которые будут говрить контроллеру сколько именно совершил оборотов совершил вал двигателя. Тогда контроллер сам будет останавливать двигатель после нужного количества оборотов, независимо от меняющейся нагрузки. Так мы сможем быть уверены, что наш робот совершил нужное перемещение. Именно так устроены классические сервоприводы – в них в качестве датчика выступает поворотный потенциометр (именно он ограничивает угол поворота) Вот только у такого способа еть свои недостатки – мы все равно можем управлять только мощностью и временем отключения питания. И управлять оборотами мы можем не очень точно – двигатель то мы отключили, но он ведь может еще некоторое время вращаться по инерции. А для высокоскоростных двигателей за время реакции контроллера вал может совершить несколько лишних оборотов.

Если же нам нужно обеспечить более точное управление двигателем, чтобы он делал точное количество оборотов или даже долей оборота – тогда нам нужно применять шаговые двигатели. С их помощью можно совершать очень точные движения, ведь вращение вала контролируется с точностью до нескольких градусов. Благодаря этому можно использвоать такие двигатели для точныз перемещений – в станках с ЧПУ, 3D принтерах и там, где возможностей сервоприводов недостаточно.

В отличие от сервопривода, в котором используется обычный двигатель постоянного тока, пусть с дополнительным датчиком, шаговый двигатель изначально построен по другой схеме. У него не одна обмотка, а несколько независимых обмоток. Причем обмотки расположены параллельно ротору, но под углом друг к другу. Подача тока на одну из обмоток заставляет ротор поворачиваться на небольщой угол и останвоиться. Если теперь выключить ток на первой обмотке, и подать на следующую – ротор повренется еще на долю оборота. А чередование аодачи напряжения между обмотками заставит ротор вращаться, причем в зависимости от частоты это будет выглядеть или как скачкообразный поворот вала двигателя на определенный угол, или как непрерывное вращение (в случае большой частоты переключения обмоток). Причем здесь мы контроллируем не только мощность но и точную частоту вращения. И можем задать точный угол поворота двигателя и отановить точно на определенном угле поворота.

Читайте так же:
Молот рессорный своими руками

В отличие от традиционного двигателя постоянного тока, шаговый двигатель обычно имеет от четырех до шести проводов для подключения. Если проводов четыре – перед нами биполярынй двигатель. Два провода подключены к одной обмотке, два – к другой. Схема подключения биполярного шагового двигателя к контроллеру на базе L298

Если же проводов шесть – это униполярыный двигатель. По два провода подключены к концам каждой обмотки и по одному – в ее середине. Эти провода подключается к заземлению. Схема подключения униполярного шагового двигателя к контроллеру на базе L298

По сравнению с биполярным двигателем, такое подключение обеспечивает большую скорость вращения, но уменьшает крутящий момент. Если нам важен именно момент, то можно просто не подключать эти провода, т.е. мы сделаем из униполярного двигателя биполярный

Схема подключения униполярного шагового двигателя к контроллеру на базе L298 как биполярного

Таким образом подключение обеих вариантов шаговых двигателей для контроллера ничем не отличаются – и там, и там мы будем управлять двумя выходами для каждой обмотки. Выбрать нужный вариант нужно исключительно исходя из типа имеющегося у нас двигателя и того, что нам более важно – скорость вращения или крутящий момент?

Конечно мы можем вручную написать код, который с определенным интервалом будет чередовать подачу тока на обмотки и таким образом обеспечить управление нашим двигателем. Но этот код давно уже написан и входит в стандартную сборку Arduino IDE, просто подключим библиотеку Stepper командой #include . Теперь создадим объект типа stepper и укажем, к каким именно пинам подключены наши обмотки. Для этого нам нужно указать еще одну характеристику шагового двигателя – количество шагов для одного оборота вала. Стандартыне двигатели, которые проще всего приобрести, обычно имеют точность позиционирования 1,8° или 3.6°. Этот угол соответствует значению одного шага, соответственно для одного оборота нужно будет совершить, соответственно, 200 и 100 шагов. Пусть наш двигетель обладет точностью 200 шагов на оборот:

Поскольку при управлении шаговым двигателем используется только наличие или отсутствие тока на обмотках, то нам нет необходимости в подключении выходов с ШИМ регулированием. Достаточно использовать только пины I1 и I2 . Логическая единица на выводе будет соотвтетствовать подаче номинального напряжения на один конец обмотки и нулевого – на другой. Логический ноль — номинальное напряжение на втором конец обмотки и нулевого на первом. Таким образом каждая из двух обмоток управляется одним цифровым выходом.

Также контроллер двигателя может иметь независимое управление каждым выходом (т.е. когда для управления одной парой выводов используется три цифровых выхода – два обычных для независимого управления каждым выходом и один ШИМ для регулирования значения подаваемого напряжения). Здесь мы полностью независимо указываем, какое напряжение (высокое или низкое) подавать на каждый из концов обмотки, т.е каждая из двух обмоток управляется с помощью двух цифровых выводов

Схема подключения такого типа контроллера двигателя:

Схема подключения униполярного шагового двигателя к контроллеру на базе L298 с двумя пинами для управления одной обмоткой

И в том, и в другом случае на каждую обмотку будет подпапться ток на время, достаточное для совершения валом одного шага. Затем ток с первой обмотки убирается, а подается на вторую (для следующего шага), или ток подается на обе обмотки (для остановки вала в текущем положении) или же тока с обеих обмоток будет снят (для свободного вращения вала) Частота таких переключений будет регулировать скорость вращения. Для изменения частоты служит метод Stepper.setSpeed(int speed); который устанавливает для нашего шагового двигателя определенную скорость вращения (в оборотах в минуту). При этом при вызове этого метода двигатель не начнет вращаться с указанной скоростью – мы только устанавливаем скорость. Для движения необходимо использовать метод Stepper.step(int steps); , который подает команду двигателю сделать steps шагов со скоростью, установленной командой setSpeed . Пример использования для двигателя, подключенного к 4 и 7 пинам:

Читайте так же:
Правильная зарядка автомобильных аккумуляторов

После загрузки на контрорллер, подключенный к нему двигатель сделает пол оборота со скоростью 60 об/мин (1 об/сек, т.е. на пол оборота ему понадобится 0.5 секунды), остановится на одну секунду, затем с той-же скоростью провернется на пол оборота в обратном направлении.

Нужно уситывать, что мы здесь не можем напрямую влиять на скорость вращения – только на частоту шагов. И если для средних и больших скоростей вращения это не так важно, то при малых значениях скорости будет хорошо заметно прерывистое вращение вала. Например, при установленной скорости 1 оборот в минуту вал двигателя не будет медленно вращаться со скоростью 6 градусов в секунду. Он максимально быстро повернется на 1,8 градуса, затем остановится на треть секунды мс, затем повернется еще на 1,8 градуса, и т.д. Для средних скоростей такое прерывистое значение будет не так заметно, зато хорошо слышны частые щелчки (с частотой переключения обмоток). Поэтому в тех случаях, где нужно медленное и плавное движение, использовать шаговые двигатели напрямую не получится – нужно будет добавлять понижающий редуктор или использовать традиционные двигатели постоянного тока.

Биполярные и униполярные шаговые двигатели

Современные шаговые двигатели, гибридые либо ШД на постоянных магнитах, как правило, производятся с двумя обмотками (4 вывода), с двумя обмоткми и центральными отводами (6 либо 5 выводов) и с четырьмя обмотками (8-ми выводные ШД). Биполярные двигатели имеют две обмотки и, соответственно, четыре вывода. Униполярные двигатели также имеют две по обмотки, но у каждой из них есть центральный отвод, что позволяет использовать для управления двигателем простой униполярный драйвер (т. е. переключать направление магнитного поля, создаваемого обмотками двигателя переполюсовкой половин обмоток двигателя). Иногда средние отводы могут быть объединены внутри двигателя, такой двигатель может иметь 6 или 5 выводов. В силу простоты униполярной схемы управления эти двигатели находят широкое применение в самых различнх областях промышленности.

Однако большинство драйверов предназначено для управления биполярными двигателями. При тех же габаритах биполярный шаговый двигатель обеспечивает больший момент по сравнению с униполярным.

Каким образом можно подключить 6-ти или 8-ми выводной мотор к биполярной системе управления и как при этом изменяются электрические характеристики двигателя?

6-ти выводные шаговые двигатели

Для подключения 6-ти выводного шагового двигателя к классическому биполярному драйверу может быть выбран один из двух способов — униполярное либо биполярное подключение обмоток двигателя.

Униполярное подключение

Если требуется вращать двигатель на средних и высоких скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать центральный отвод.

Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге.

Биполярное подключение

Если требуется вращать двигатель на низких скоростях (из диапазона рабочих скоростей), лучший тип подключения — биполярное.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При последовательном включении обмоток потребляемая мощность становится Iбиполяр. 2 * 2 * R

Читайте так же:
Полезные самоделки для хозяйства

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = Iбиполяр. 2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Итак, характеристики ШД будут такими:

ПараметрЗначение
Iбиполяр.= 0.707 * Iуниполяр.
Сопротивление обмотки, ОмRбиполяр. = 2 * Rуниполяр.
Индуктивность обмотки, мГнLбиполяр. = Lуниполяр.
Крутящий момент, кг×смTбиполяр. = 1.4 * Tуниполяр.

8-ми выводные шаговые двигатели

Для подключения 8-ми выводного шагового двигателя (то есть двигателя с четырьмя обмотками) к классическому биполярному драйверу может быть выбран один из трех способов — униполярное, последовательное либо параллельное подключение обмоток двигателя.

Униполярное подключение

Если требуется вращать двигатель на средних скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать лишь две из четырех обмоток.

Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге.

Биполярное последовательное подключение

Наиболее эффективно для низкоскоростного диапазона рабочих скоростей двигателя.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При последовательном включении обмоток потребляемая мощность становится Iпослед. 2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = Iпослед. 2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Итак, характеристики ШД будут такими:

ПараметрЗначение
Iбиполяр.= 0.707 * Iуниполяр.
Сопротивление обмотки, ОмRбиполяр. = 2 * Rуниполяр.
Индуктивность обмотки, мГнLбиполяр. = Lуниполяр.
Крутящий момент, кг×смTбиполяр. = 1.4 * Tуниполяр.

Биполярное параллельное подключение

Наиболее эффективно использование параллельного включения обмоток для высоких скоростей.

При таком типе подключения нужно увеличить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при параллельном включении обмоток требуемый ток — 2.8 А, то есть в 1.4 раза больше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При параллельном включении обмоток сопротивление объединенной обмотки уменьшаетсяв два раза (0.5 R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При параллельнном включении обмоток потребляемая мощность становится 0.5 * Iбиполяр. 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = 0.5 * Iбиполяр. 2 * R, откуда Iбиполяр..= Iуниполяр. /√2, т.е.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением величины тока, пропускаемого через обмотки. Но так как ток увеличился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector