Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технологический процесс сварки

Технологический процесс сварки

Проектирование технологического процесса сварки представляет собой сложную оптимизационную задачу, основанную на использовании расчетных аналитических методов проектирования. Оптимальный вариант технологического процесса изготовления сложной сварной конструкции выбирается из нескольких расчетных вариантов технологии. В зависимости от основного назначения различают перспективные и рабочие технологические процессы.

технологический процесс сварки

включает в себя :

  • последовательность технологических операций;
  • разбивку конструкции на отдельные технологические узлы или элементы;
  • эскизную проработку специальных приспособлений и оснастки;
  • расчеты режнмов основных сварочных процессов, расчеты ожидаемых сварочных напряжений и деформаций;
  • сравнительную оценку разработанныхвариантов технологии.

После окончательного утверждения технического проекта и прииятого варианта технологии выполняют рабочее проектирование конструкции (составление конструкторской документации) и разработку рабочей технологии (составление технологической документации).

Рабочий технологический процесс сварки включает в себя :

  • уточнения и изменения принципиального технологического процесса, связанные с изменением конструкции на этапе рабочего проектирования;
  • разработку технологических карт, в которых указывают все параметры режима сварки, примеияемые сварочные материалы иоборудование;
  • краткие описания технологических приемов выполнения отдельных сварочных операций;
  • требования к прочности и качеству сварных конструкций на отдельных этапах их изготовления;
  • указания методов проверки точности и контроля качества соединений, узлов и готовой конструкции.

В зависимости от количества изделий, охватываемых процессом, установлено два вида технологического процесса : типовой и единичный. Правила разработки рабочих технологических процессов предусматривают обязательное использование типовых технологических процессов и стандартов на технологические операции.

В зависимости от степени детализации каждый технологический процесс сварки может быть маршрутным, операционным или операционно-маршругным. Типовые технологические процессы разрабатывают на основе анализа многих действующих и возможных технологических процессов для типовых представителей групп изделий. Технологическая операция является частью технологического процесса, выполияемой на одном рабочем месте.

Технологический процесс сварки : разработка типового техпроцесса сварки

К основным этапам разработки типового технологического процесса относятся:

1) классификация объектов производства — выбирают группы объектов, имеющих общие конструктивно-технологические характеристики, и типовых представителей групп;

2) количественная оценка групп объектов — оценка типа производства (единичное, серийное или массовое);

З) анализ конструкций типовых объектов по чертежам, техническим условиям (ТУ), программам выпуска и типу производства разрабатывают основные маршруты изготовления конструкций, включая заготовительные процессы;

4) выбор заготовки и способов ее изготовления с технико-экономической оценкой оценивают точностные характеристики способов изготовления и качества поверхности, выбирают метод обработки;

5) выбор технологических баз;

6) выбор вида производства (сварка, литье, обработка давлением, механическая обработка);

7) составление технологического маршрута обработки — определяют последовательность операций и выбирают группы оборудования по операциям;

8) разработка технологических операций, включающая в себя:

  • рациональное построение операций;
  • выбор структуры операций;
  • рациональную последовательность переходов в операции;
  • выбор оборудования, обеспечивающего оптимальную производительность и требуемое качество;
  • расчет загрузки технологического оборудования;
  • выбор конструкции технологической оснастки;
  • определение принадлежности выбранной конструкции к стандартным системам оснастки;
  • установление исходных данных, необходимых для расчетов, и расчет припуска на обработку и межоперационных припусков;
  • установление исходных данных для расчета оптимальных режимов обработки и их расчеты;
  • установление исходных данных для расчета норм времени и их расчет;
  • определение разряда работ и профессии исполнителей;

9) расчет точности, производительности и экономической эффективности вариантов типовых технологических процессов с выбором оптимального варианта;

1О) оформление документации на типовой технологический процесс сварки, согласование ее с заинтересованными службами и утверждение.

На предприятии должны быть компьютерные информационно-поисковые системы для поиска ранее разработанных аналогичных технологических процессов и отдельных технологических операций.

Всю информацию вводят в компьютер в кодированном виде. При разработке технологического процесса анализируют технологичность сварных изделий и конструкций. Количественная оценка технологичности основывается на системе показателей, включающей в себя:

  • базовые показатели технологичности, устанавливаемые в техническом задании на проектирование изделия;
  • показатели технологичности, достигнутые при разработке конструкции;
  • уровень технологичности (отношение достигнутых показателей к базовым).

Основными показателями технологичности являются трудоемкость и технологическая себестоимость изготовления изделия.

Факторы, влияющие на выбор показателей: требования к изделию, вид изделия, объем выпуска, наличие информации, необходимой для определения показателей.

Требования к изделию определяют, каким видом технологичности должна обладать конструкция: производственным, эксплуатационным или и тем и другим, что, в свою очередь, определяет группу показателей технологичности.

В зависимости от вида изделия (сборочная единица, комплекс, комплект или деталь) из групп выбирают те показатели, которые могут характеризовать технологичность данного вида изделия.

Знание объема выпуска позволяет выбирать показатели, характеризующие расходы или затраты и имеющие наибольшую значимость при данном объеме выпуска.

Технологический процесс и особенности сварки

Сварка является одним из ведущих технологических процессов как в области машиностроения, так и в строительной индустрии.

Способ получения неразъемных соединений деталей путем сварки и пайки стал известен людям в глубокой древности. История не сохранила нам имен первых сварщиков. Об их искусстве мы можем судить лишь по раскопкам археологов и гипотезам ученых. В египетских пирамидах были найдены золотые изделия, которые имели паяные оловом соединения, а при раскопках Помпеи обнаружены свинцовые водопроводные трубы с продольным паяным швом.

Мысль о возможности практического применения «электрических искр» для плавления металлов впервые высказал в 1753 году академик Российской Академии Наук Г.Р. Рихман при исследовании атмосферного электричества.

Но быстрое развитие сварки началось только в конце XIX в.

В 1802 году профессор Санкт-Петербургской военно-хирургической академии В.В. Петров открыл явление электрической дуги и указал возможные области её применения.

Читайте так же:
Фильтр для маски сварщика

В 1882 году Н.Н. Бернардос предложил способ электрической дуговой сварки угольным электродом, а в 1888 году Н.Г. Славянов – металлическим электродом. Они же и изобрели и ряд других процессов и вариантов сварки, в частности предложили устройство для механизированной подачи сварочной проволоки в электрическую дугу, использовали дроблёное стекло в качестве флюса для защиты сварочной ванны от воздействия воздуха и других факторов.

Широкое развитие сварки и её использование в промышленности началось в 30-е годы 20-го столетия. В Советском Союзе впервые в мире были изобретены многие новые виды и высокопроизводительные способы сварки: подводная; в космосе; электрошлаковая;

в среде углекислого газа; диффузорная; сварка трением; сварка живых биологических тканей и др.

Выдающийся вклад в разработку теоретических основ сварки и её промышленное использование внесли учёные В.П. Вологодин, В.П. Никитин, К.К. Хренов, Е.О. Патон, Б.Е. Патон и др.

В зависимости от формы энергии, используемой для образования сварного соединения, все виды сварки разделяют на три класса: термический, термомеханический и механический.

К термическому классу относятся виды сварки, осуществляемые плавлением с использованием тепловой энергии (дуговая, плазменная, электрошлаковая, электронно-лучевая, лазерная, газовая и др.).

К термомеханическому классу относятся виды сварки, осуществляемые с использованием тепловой энергии и давления (контактная, диффузионная и др.).

К механическому классу относятся виды сварки, осуществляемые с использованием механической энергии и давления (ультразвуковая, взрывом, трением, холодная и др.).

В последние годы ученые-сварщики Беларуси работают над созданием ресурсосберегающих технологий, которые позволяют снизить потребление электроэнергии, уменьшить расход материалов, рационально использовать труд сварщиков при изготовлении различных конструкций, машин и изделий.

При производстве сварных изделий важную роль имеет контроль качества сварочных соединений. Для контроля качества сварки применяют различные разрушающие и неразрушающие испытания.

Методы неразрушающего контроля позволяют выявить дефекты без повреждения объектов контроля.

Повышение производительности труда в области сварочного производства достигается механизацией и автоматизацией самих процессов, т.е. переходом от ручного труда сварщика к механизированному, комплексной механизацией, включающей механизацию подготовительных, сварочных, сборочных, отдельных вспомогательных и контрольных операций.

Выбор, краткое описание и подготовка оборудования рабочего места сварщика, спецодежда

Сварочный пост – рабочее место сварщика, укомплектованное оборудованием для выполнения сварочных работ: источником питания; электрододержателем; защитным щитком; приспособлениями для сборки и сварки; вспомогательными инструментами.

Сварочные посты могут быть стационарными и передвижными.

Стационарные посты располагают в цехе, преимущественно в отдельных сварочных кабинах, в которых сваривают изделия небольших размеров. Стенки кабин могут быть изготовлены из тонкого металла, фанеры, брезента, пропитанных огнестойким раствором. Пол кабины должен быть выложен из огнестойкого материала. Стены выкрашены в светло-серый цвет, поглощающий ультрафиолетовое излучение. Освещенность кабины – не менее 80 люкс. Кабину оборудуют местной вентиляцией с воздухообменом 40 м3/ч. детали сваривают на рабочем столе высотой 0,5 – 0,7 м. Если выполняются однотипные работы, то стол заменяют манипулятором или другим приспособлением, на котором изделие собирают и сваривают в удобном для сварщика положении.

В зависимости от свариваемых материалов и применяемых электродов для ручной дуговой сварки применяют источники переменного или постоянного тока с крутопадающей характеристикой. В кабине устанавливают рубильник или магнитный пускатель для включения источника сварочного тока.

Передвижные посты, как правило, применяют при монтаже крупногабаритных изделий (трубопроводов, металлоконструкций и т. д.) и ремонтных работах. При этом часто используют переносные источники питания. Для защиты рабочих от излучения дуги ставят щиты. Для защиты от осадков используют навесы, а на монтаже – передвижные машинные залы.

К инструментам и принадлежностям электросварщика относятся электрододержатель, щиток или маска, специальный молоток с зубилом, стальная щётка, металлические клейма для маркировки сварных швов и ящик или сумка для хранения и переноски электродов и инструмента.

Электрододержатель — один из основных инструментов электросварщика, от которого во многом зависят производительность и безопасные условия труда. Электрододержатель должен удовлетворять следующим требованиям: быть лёгким (не более 0,5 кг) и удобным в обращении; иметь надёжную изоляцию; не нагреваться при работе и обеспечивать наиболее полное расплавление электрода; обеспечивать быстрое и надёжное закрепление электрода в удобном для сварки положении; его зажимное устройство должно действовать без больших усилий как при закрепление электрода, так и при его смене; присоединение сварочного провода к стержню держателя должно быть прочным и обеспечивать надёжный контакт. Для ручной дуговой сварки существует несколько типов электрододержателей. В некоторых из них для безопасной работы сварщика предусмотрено либо ручное, либо автоматическое отключение тока в момент прекращения процесса сварки. Один из таких электрододержателей показан на рисунке 8.

При ввинчивании стержня 9 в трубку до соприкосновения его с контактом, электрическая цепь от провода до цилиндрического контакта 4 замыкается. При одном-двух поворотах цилиндрической рукоятки стержень 6 вывинчивается из трубки 3 и образует зазор между ним и контактом 10, в результате чего электрическая цепь размыкается.

Щитки и маски (рис.2) применяются для предохранения глаз и кожи лица сварщика от вредного влияния ультрафиолетовых лучей и брызг расплавленного металла. Их изготовляют из лёгкого токонепроводящего материала (фибра, спецфанера). Масса щитка или маски не должна превышать 0,6 кг. За процессом сварки наблюдают через специальные стёкла. Тёмные стёкла — светофильтры марки Э-1 применяют при величине тока до 70А, Э-2 – при величине тока до 200А, Э-3 — при величине тока 400А и Э-4 — при величине тока больше 400А. Для предохранения от брызг металла светофильтры марки ТС-3 закрывают прозрачным стеклом. Для работы в монтажных условиях лучше применять каску-маску, которая также надёжно защищает голову и удобна в эксплуатации как в летнее, так и зимнее время.

Читайте так же:
Фрезер фиолент мф3 1100э отзывы

Рис. 2. Маска сварщика

Сварочные провода. Ток от силовой сети подводится к сварочным аппаратам по проводам марки КРПТ. От сварочных аппаратов к рабочим местам сварочный ток поступает по гибкому проводу марки ПРГ, АПР, или ПРГД с резиновой изоляцией. К электрододержателю должен быть подключен гибкий медный провод марки ПРГД длиной не менее 3 м.

Для соединения сварочных проводов применяют специальные муфты (рис.10). Сечение сварочного кабеля, присоединяющего источник питания к электрододержателю, подбирают в зависимости от наибольшей величины сварочного тока: при токе до 240А — 25 мм 2 ; до 300А — 35 мм 2 , до 400А — 50 мм 2 , до 500А — 70 мм 2 . Гибкий (медный) кабель используют на напряжение до 220 В. В случае использования негибкого кабеля конец его, подсоединяемый к электрододержателю, длиной не менее 1,5-3м должен быть обязательно гибким. Общая длина сварочного кабеля должна быть не более 30-40м, так как при более длинном кабеле ухудшается процесс сварки из-за падения напряжения в сварочной цепи.

Рис. 3. Соединитель МС-2 сварочного провода:

1-резиновая изоляция; 2- гайка; 3,4 – вставки; 5- конус

Для подсоединения сварочного кабеля к источнику питания используют специальный концевой соединитель заводского изготовления или приваренную к кабелю клемму. Сращивание коротких кусков кабеля осуществляют соединителями заводского изготовления (рис.10) МС-2, предназначенными для соединения кабелей сечением 35, 50 и 70 мм 2

Вспомогательный инструмент — в процессе работы сварщик пользуется инструментами для зачистки кромок от ржавчины и других загрязнений, а также для вырубки дефектов и зачистки швов от шлака. Для этого применяют металлическую проволочную щётку, зубило, молоток, комбинированное зубило с рукояткой, имеющее один заострённый конец, а другой конец в виде обычного зубила. Такая форма зубила удобна для очистки от шлака отдельных слоёв многослойного шва. Иногда применяют комбинированное зубило-щётку, но оно менее удобно, так как не имеет заострённого конца. У сварщика должно быть личное клеймо для клеймения выполненных швов.

Для измерения разделки кромок, зазора между стыками и сварных швов используют набор шаблонов ШС-2. Шаблоны позволяют контролировать угол скоса кромок, размер притупления, качество сборки под сварку, размер деплонации (превышение одной кромки над другой) стыковых швов и величину зазора в стыковых и тавровых соединениях. В готовых сварных швах могут быть проверены высота выпуклости стыкового и углового шва, ширина шва, величина катета углового шва.

Для работы сварщику необходимо иметь набор инструментов, включающий инструмент для зачистки (проволочную щётку, зубило, молоток), разводной ключ, шаблоны и д.р. Имеются наборы инструмента ЭНИ-300, КИ-315 и КИ-500, куда входят кроме перечисленного инструмента электрододержатель, приспособления для соединения кусков сварочного кабеля и для заземления, пассатижи и другие инструменты и приспособления. Весь этот комплект размещён в инструментальном ящике с ручкой и переносится по мере необходимости с одного поста на другой. Такой комплект каждому сварщику желательно иметь, однако есть инструменты, без которых сварщик вообще не должен работать: стальная проволочная щётка, зубило, молоток, зубило с рукояткой, имеющие один заострённый конец и другой, заточенный как зубило, пассатижи.

Спецодежда электросварщика. Спецодежда (куртка и брюки или комбинезон, а также рукавицы) изготовляются из плотного брезента, сукна, асбестовой ткани и других материалов. Спецодежда выдаётся бесплатно в соответствии с нормами и сроками носки. Брюки носят навыпуск, а куртку — не заправляют в брюки. Чтобы избежать попадания расплавленного металла, карманы куртки должны закрываться клапанами, куртка должна застёгиваться на все пуговицы. В резиновой спецодежде, обуви и перчатках, за исключением особенно сложных условий, работать нельзя, так как брызги металла прожигают резину. Головной убор должен быть без козырька, а обувь — на резиновой подошве. В холодное время года разрешается надевать валенки.

Разработка технологического процесса сборки и сварки

Сварка как прогрессивный технологический процесс получения неразъемных соединений деталей, позволяющий создавать конструкции с высокими эксплуатационными характеристиками. Особенности разработки технологического процесса сборки и его обоснование.

РубрикаПроизводство и технологии
Видкурсовая работа
Языкрусский
Дата добавления29.11.2011
Размер файла50,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сварка — это прогрессивный технологический процесс получение неразъемных соединений деталей, позволяющий создавать конструкции с высокими эксплуатационными характеристиками. Достоинства сварочных соединений способствуют широкому применению их в конструкциях разного назначения. Использование сварки позволяет экономить материалы и время при производстве конструкций. При этом открывается большие возможности механизации и автоматизации, производительности, улучшаются условия труда работающих. С развитием научно-технического прогресса расширяется возможность сварки деталей разных толщин материалов, а в связи с этим и набор применяемых видов и способов сварки. В настоящее время сваривают детали толщиной от нескольких миллиметров до десятков сантиметров и даже метров.

Читайте так же:
Термическая обработка титановых сплавов

Наряду с конструкционными углеродистыми и низколегированными сталями все чаще приходится сваривать специальные стали, легкие сплавы и сплавы на основе метана, молибдена, циркония и других металлов, а также разнородных металлов. От прогрессивности применяемых сварочных процессов и качества и надежность готовых конструкций, и эффективность производства в целом. Одно из наиболее развивающихся направлений в сварочном производстве — широкое использование механизированной и автоматической дуговой сварки. Эти вопросы решаются механизацией и автоматизацией, как самих сварочных процессов, так и комплексной механизацией и автоматизацией охватывающим все виды работ связанного с изготовлением сварных конструкций и созданием побочных и автоматических производственных линий. Важное значение при этом отводится созданию специального сварочного оборудования и средств оснащения технологических процессов. В условиях непрерывного усложнения конструкций, неуклонного роста объема сварочных работ большую роль играет правильное проведение технологической подготовки производства, в значительной степени определяющей его трудоемкость и сроки освоения, экономические показатели, использования средств механизации и автоматизации. Наибольший эффект технологической подготовки достигается при комплексном решении вопросов — технологической отработки самих конструкций и разработки технологических процессов и их оснащение на всех этапах производства.

1.1 Назначение, условие работы и описание узла, конструкции изделия

Сепаратор имеет форму цилиндра с расширением в верхней части. Через колпачковую распределительную решетку в слой подаётся горячий воздух, который является и ожижающим агентом.

Вещество на окисление подаётся через форсунки, непосредственно в слой. Теплота реакции отбирается U-образными горизонтальными теплообменными элементами, расположенными в слое. Хладагентом служит кипящая вода.

В верхней части аппарата вертикально установлены патронные фильтрующие элементы из стеклоткани, которые очищают контактные газы от пыли сепаратора.

Из описания конструкции видно, что аппарат с псевдоожиженным слоем значительно проще аппарата со стационарным слоем катализатора для аналогичного процесса, однако выход и качество продукта на стационарном слое выше, чем в псевдоожиженным.

1.2 Технические условия на материалы, сборку и сварку, ГОСТы

Технические условия — это технический документ, который разрабатывается по требованию заказчика или по решению разработчика на изделие.

Технические условия являются неотъемлемой частью комплекта конструкторской или технической документации на продукцию, а при отсутствии документации должны содержать полный комплекс требований к продукции, ее изготовлению, контролю и приемке. Требования установленным техническим условия не должны противоречить обязательным требованиям ГОСТа.

Сталь углеродистая обыкновенного качества поставляется по ГОСТ 380-94 и применяется при изготовлении обечаек, днищ, фланцев, люков, патрубков и других деталей аппаратов, работающих в интервале температур от — 20 до + 425 и давлении до 5 мПа.

Механические свойства стали:

Марка стали ВСт3сп5

Химические свойства стали ВСт3сп5

ВСт3сп5 ГОСТ 380-94

Углерод — 0,14 — 0,22;

Марганец — 0,40 — 0,65;

Кремний — 0,12 — 0,80;

Сера не более 0,050;

Фосфор не более 0,040;

2. Технологическая часть

2.1 Схема сборки и сварки

2.2 Разработка технологического процесса сборки и сборки и его обоснование

2.2.1 особенности сборки и сварки

После заготовки детали сварных конструкций поступают на сборку. Сборкой называют процесс последовательного соединения деталей между собой в порядке, предусмотренном технологическом процессом и чертежам для последовательной сварки.

Основная цель технологического процесса сборки заключается в определении наиболее выгодной последовательности сборки отдельных деталей, обеспечивающих выполнение технологических требований на изготовление данного изделия при минимальных рабочей силы, времен, вспомогательных материалов. Перед сборкой сборщик визуально проверяет соответствие деталей требованиям чертежа и технологического процесса. Сопрягаемые поверхности и прилегающие к ним зоны собираемых деталей шириной не менее 20 мм должны быть тщательно очищены от ржавчины, масла, грязи, окалины и влаги во избежание появления пор и других дефектов в металле шва.

При сборке сварных конструкций обеспечивается такое взаимное расположение деталей собираемого узла, в котором они должны находится в готовом узле. Порядок сборки, устанавливаемый технологом-сварщиком указывается в картах технологического процесса. Зазоры при сборке должны строго соответствовать чертежу. Повышение кромки одного из элементов стыкового соединения над другим если оно не предусмотрено и не оговорено специально в чертеже допускается по всей длине шва не более 0,2 толщины элемента и 0,15 толщины элемента. Местные превышения кромок определяют по наименьшей толщине сварочных деталей. Превышение кромок контролируется до сварки.

При сборке сварных конструкций детали между собой соединяют посредством прихваток, которые размещают в местах расположения будущих сварных швов. Прихватки выполняются покрытыми, в защитных им под флюсом. Площадь сечения прихваток не должна превышать 2/3 площади сечения будущего шва и составлять не более 25 — 30 мм 2 . Длина каждой прихватке должна быть равной 4 — 5 толщинам соединения деталей, но не менее 30 мм и не более 100 мм. Чем меньше толщина сварочных деталей, тем меньше расстояние между прихватками. В решетчатых конструкциях каждый элемент прихватывают с двух сторон швами длиной 30 — 40 мм, катетом не более 5 мм.

2.2.2 Выбор рода тока и полярности

Влияние рода тока и полярности на форму шва объясняется различным количеством теплоты, выделяющейся на катоде и аноде. Пи сварке под флюсом на аноде выделяется меньше теплоты, а на постоянном токе прямой полярности глубина провара получается примерно на 40-50 % меньше чем при сварке на обратной полярности, и на 15-20 % меньше чем при сварке на переменном токе. В связи с этим при сварки на прямой полярности коэффициент наплавки и высота выпуклости шва больше чем при сварке на обратной полярности.

Читайте так же:
Флюгер самолет своими руками фото чертежи

2.2.3 Выбор метода сварки

Ручная дуговая сварка — тепло необходимое для расплавления основного металла и электродного стержня образуется в результате горения электрической дуги, обладающей высокой температурой до 4000 — 6000 °С. Расплавленные основной и электродный металлы перемешиваются в сварочной ванне и по мере продвижения дуги быстро затвердевают, образуя сварной шов. Электродное покрытие, нанесенное на металлический стержень электрода, состоит из различных компонентов, которые при расплавлении создают шлаковую и газовую защиту сварочной ванны от вредного влияния кислорода и азота воздуха.

Автоматическая сварка под флюсом — в этом случае электрическая дуга горит под слоем зернистого флюса, который предохраняет расплавленный металл от воздуха и при необходимости легирует его. Электродная проволока подается в дугу автоматически при помощи сварочной головки снабженной электродвигателем. Флюс осыпается в зону сварки под действием собственной массы. Одновременно с этим вся установка передвигается вдоль сварочного шва. При этом методе сварки обеспечивается высокая производительность, хорошее качество шва.

2.2.4 Выбор марки электродов, сварочной проволоки, флюса

Холоднотянутую стальную сварочную проволоку сплошного сечения выпускают по ГОСТ 2246-70 , который предусматривает 77 марок разного химического состава.

Разработка технологического процесса ручной дуговой сварки

Цель работы — изучить конструкцию и принцип действия сварочных аппаратов для ручной дуговой сварки. Освоить навыки выбора сварочного оборудования, электродов и параметров режима сварки.

1. Теоретические сведения

1.1. Плавящиеся и неплавящиеся электроды, тепловая энергия сварочной дуги, источники нагрева электрода

Дугой называют мощный устойчивый электрический разряд в ионизированной газовой среде между электродом и изделием.

В зависимости от того, в какой среде происходит горение электрической дуги, различают:

открытую дугу, горящую на воздухе (состав газовой среды в зоне дуги — воздух с примесью паров свариваемого металла, материала электродов и электродных покрытий);

закрытую дугу, горящую под слоем флюса (пары основного металла, проволоки и защитного флюса)',

• электрическую дугу, горящую в среде защитных газов (атмосфера защитного газа, пары основного металла и сварочной проволоки).

Как показано на рис. 1, сварку можно вести плавящимся (металлическим) электродом или с использованием неплавящегося ( угольного или вольфрамового) электрода.

Между торцом неплавящегося электрода и свариваемым изделием горит электрическая дуга. Присадочный металл вводится в зону горения сварочной дуги дополнительно. Он расплавляется и формирует сварной шов. Плавящийся электрод сочетает функции неплавящегося электрода и присадочного металла.

При электрической дуговой сварке электрическая энергия преобразуется в тепловую энергию, которая концентрированно вводится в свариваемые заготовки и оплавляет их в месте соединения.

Полная тепловая энергия, выделяемая при горении сварочной дуги

где — сила сварочного тока, А; U — напряжение сварочной дуги, В; -время сварки, с.

Однако не вся тепловая энергия, выделяющаяся при горении сварочной дуги, расходуется на нагрев и расплавление основного металла и электрода. Часть тепловой энергии расходуется на плавление отдельных компонентов покрытия и образование газов, а часть тепловой энергии рассеивается в окружающей среде.

Эффективной тепловой энергией называют полезно используемую при сварке теплоту

где η — коэффициент полезного использования тепловой энергии сварочной дуги.

Коэффициент полезного использования тепловой энергии сварочной дуги т) зависит от конкретных условий сварки. Так, при ручной дуговой сварке величина этого коэффициента может колебаться в пределах η = 0,6. 0, 82.

В процессе сварки плавящиеся электроды нагреваются двумя источниками:

тепловой энергией сварочной дуги Qэфф;

теплотой, выделяющейся при протекании электрического тока на вылете электрода ( длина электрода от электродержателя до конца электрода) Q.

Тепло, выделяемое на. вылете электрода Q, рассчитывается по закону Джоуля-Ленца

где R — сопротивление вылета электрода, ом. Сопротивление вылета электрода ,ом , где ρ — удельное сопротивление, ом·см; lвыл — длина вылета электрода, мм; S — площадь поперечного сечения электрода, мм2.

1.2. Сварочные аппараты и их внешние вольтамперные характеристики

Дуговую сварку плавлением выполняют постоянным или переменным током (рис. 2. 4).

Для сварки переменным током (рис. 2) применяют сварочные трансформаторы. Трансформатор понижает напряжение сети с 380В или 220 В до 70. 80 В и менее, одновременно увеличивая силу тока до нужного значения. Для регулирования силы тока используют регуляторы. Они либо выполнены отдельно от трансформатора (см. рис. 2), либо совмещены с трансформатором (см. рис. 6, 7). Амперметр и вольтметр показывают величину силы тока и напряжения при сварке.

Для сварки постоянным током применяют сварочные преобразователи (рис. 3), сварочные агрегаты или сварочные выпрямители (рис. 4). Регуляторы силы тока и здесь выполняют свою роль.

Сварочные преобразователи имеют электрический привод -электродвигатель переменного тока. Вал электродвигателя соединен с валом генератора, который преобразует механическую энергию в постоянный электрический ток. В сварочных агрегатах вал генератора вращается двигателем внутреннего сгорания.

Там, где есть сетевая электроэнергия, используют сварочный преобразователь (электродвигатель + генератор). В полевых условиях, где нет сетевой электроэнергии, используют сварочный агрегат (карбюраторный или дизельный двигатель + генератор).

Читайте так же:
Проверка кабеля мегаомметром методика

В настоящее время на многих предприятиях сварочные преобразователи заменяют выпрямителями, так как последние во время работы не шумят и у них больше коэффициент полезного действия. В выпрямительных установках переменный ток с выхода понижающего трансформатора подают на выпрямитель.

При сварке постоянным током обеспечивается высокая стабильность горения сварочной дуги и качество сварного соединения. Поэтому высоколегированные стали, из которых изготавливают ответственные конструкции сваривают с использованием постоянного тока.

Основным недостатком сварки постоянным током является меньший, по сравнению со сваркой переменным током, коэффициент полезного действия. Сварочный генератор постоянного тока, вырабатывающий сварочный ток, необходимо приводить в движение электрическим двигателем переменного тока (сварочный преобразователь) или двигателем внутреннего сгорания (сварочный агрегат>. В обоих случаях будут потери на трение движущихся деталей и потери в обмотках электрических машин. Оборудование для сварки постоянным током конструктивно сложнее и стоит дороже.

При ручной дуговой сварке используют источники тока с крутопадающей внешней характеристикой (рис. 5). Внешней вольтамперной характеристикой называют зависимость напряжения на клеммах источника оттока нагрузки.

К источникам тока для ручной дуговой сварки предъявляют следующие требования:

напряжение холостого хода должно обеспечивать надежное зажигание сварочной дуги, а также отвечать правилам техники безопасности (не должно превышать Uхх = 80 В);

ток короткого замыкания должен быть ограничен;

внешняя вольтамперная характеристика источника тока должна быть крутопадающей для ограничения токов короткого замыкания и повышения стабильности горения сварочной дуги;

источник тока должен быть надежным и простым в эксплуатации.

При малых значениях тока короткого замыкания затрудняется зажигание дуги, а при больших его значениях увеличивается перегрев токоведущих частей и электрода, возрастают потери металла на разбрызгивание. Поэтому у источников тока для ручной дуговой сварки отношение тока короткого замыкания Iкз и сварочного тока Iсв должно изменяться в следующих пределах

(4)

Длину дуги поддерживают вручную. Поэтому в процессе сварки возможно изменение ее длины из-за непроизвольных движений руки сварщика. Источник сварочного тока должен обеспечить устойчивое горение сварочной дуги при изменении ее длины.

Дуга переменного тока зажигается и гаснет 100 раз в секунду. Поэтому для интенсивного первоначального и повторного зажигания дуги при проектировании источников сварочного тока обеспечивают условие

Напряжение холостого хода у разных сварочных аппаратов Uхх = 40. 80 В. У сварочных аппаратов постоянного тока напряжение холостого хода и рабочее напряжение ниже, чем у трансформаторов благодаря более высокой устойчивости горения сварочной дуги постоянного тока. Более низкое напряжение уменьшает вероятность поражения сварщика электрическим током.

При слишком короткой дуге возможно возникновение режима короткого замыкания и приваривание электрода к изделию. При слишком длинной дуге происходит ее обрыв из-за недостатка подводимой энергии.

При чрезмерно большом токе короткого замыкания возможен пробой и повреждение изоляции обмоток источника сварочного тока.

При прохождении большого тока по электроду, он сильно нагревается по всей длине. При этом может растрескаться и осыпаться электродное покрытие. Тогда будет затруднено повторное зажигание дуги.

Мет. указание Ручная дуговая сварка

Подписано в печать 18.12.2000

Формат 60*84 1/16. Усл. п.л. 1,63

Уч. — изд л. 1,5. Тир. 30 экз.

Издательство ВСГТУ, г. Улан-Удэ, ул. Ключевская 40 А

Министерство образования РФ

Восточно-Сибирский государственный технологический университет

Кафедра «Металловедение и технология обработки материалов»

РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА РУЧНОЙ ДУГОВОЙ СВАРКИ

к расчетно-графической работе №3

Составители: Аганаев Ю.П.

РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА РУЧНОЙ ДУГОВОЙ СВАРКИ

Цель: Ознакомиться с методикой разработки технологии ручной дуговой сварки и составить технологическую карту.

При разработке технологического процесса сварки необходимо в зависимости от марки, механических свойств, размеров и типа соединения свариваемых деталей выбрать тип и марку электрода, определить разделку кромок, диаметр электрода, род и силу сварочного тока, марку источника питания электрической дуги и его схему.

Методика выполнения задания

По механическим свойствам заданной марки стали выбрать тип электрода;

По химическому составу и пространственному положению шва определить марку электрода;

По марке электрода уточнить род тока, полярность, коэффициент Кн и положение шва в пространстве.

По толщине и типу соединения свариваемых деталей назначить разделку кромок и диаметр электрода.

По диаметру электрода рассчитать силу тока.

По роду и силе сварочного тока выбрать марку источника питания дуги.

Определить свариваемость данной марки стали.

Определить время сварки детали.

Каждому студенту выдается вариант задания (табл. 1), справочные данные по сталям, типам и маркам электродов, источникам питания дуги (табл. 2, 3 …).

Типы электродов установлены по ГОСТ 9467-75 «Электроды покрытые металлические для ручной дуговой сварки конструкционных,

Технология конструкционных материалов, п/р

А.М. Дальского, М., Машиностроение, 1985.

Справочник сварщика, п/р В.В. Степанова, М., Машиностроение, 1983.

ГОСТ 5264-80. Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры.

углеродистых, низколегированных и теплоустойчивых сталей», ГОСТ 10052-75 «Электроды покрытые металлические для ручной дуговой сварки высоколегированных сталей с особыми свойствами». Марки электродов выбираются по паспортам или техническим условиям заводов-поставщиков. Каждому типу электрода может соответствовать одна или несколько марок электродов. В характеристиках электродов указываются различные технологические параметры.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector