Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Площадь круга; формулы, примеры расчетов

Площадь круга – формулы, примеры расчетов

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.

Окружность и круг — в чём отличие?

Часто понятия круг и окружность путают, хотя это разные вещи. Окружность — это замкнутая линия, а круг — это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко — это окружности, а монета или вкусный блин — это круги.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от одной заданной точки — центра окружности.

Круг — бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.

Площади фигур

Расчет площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции, ромба, круга (площадь фигур).Площади фигур

Уравнение окружности

r 2 = ( x – a ) 2 + ( y – b ) 2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами ( a, b ) в декартовой системе координат:

<x = a + r cos t
y = b + r sin t

Найти площадь кругаОнлайн калькулятор

Радиус круга r

Диаметр – это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно разделить его обратно на два.
Длина окружности представляет собой удвоенное произведение радиуса и числа π: P=2πr, обратным методом получаем, что радиус равен длине окружности, разделенной на его множитель.

Формула площади круга через диаметр

  • S=π*d 2 /4, где
  • S – площадь круга
  • π – постоянное число, равное 3,14
  • d – диаметр окружности

Формула площади круга через радиус

Таблица с формулами площади круга

Длина окружности круга

Множество точек удаленных от центра круга на расстояние, не превышающее радиус круга, называется кругом. Отношение длины любой окружности C к ее диаметру d всегда будет равно одному и тому же числу. Это число – всем известное число π («пи»), которое примерно равно 3,14. Так же, справедлива формула определения числа π , как отношение длины окружности C к двум ее радиусам r . Исходя из этого, выводится формула длины окружности C , которая равна произведения числа π и диаметра d окружности или 2-м ее радиусам r .

Для примера решим простую задачу, где нужно найти длину окружности, у которой известен радиус r =2 см.

Подставляем известные данные в формулу длины окружности и получаем, что длина окружности примерно равна 12,56 см.

Площадь круга описанного вокруг квадрата


Очень легко можно найти площадь круга описанного вокруг квадрата.

Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда .
После того, как найдем диагональ – мы сможем рассчитать радиус: .
И после подставим все в основную формулу площади круга описанного вокруг квадрата:

Рассмотрим пример расчета площади круга, описанного вокруг квадрата.
Задача: дан квадрат, вписанный в круг. Его сторона a = 4 см. Найдите площадь окружности.
Для начала рассчитаем длину диагонали d .


Теперь подставляем данные в формулу

Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.

Центральный угол, вписанный угол и их свойства

Основные свойства касательных к окружности

3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

Читайте так же:
Схема регулятора напряжения постоянного тока

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».

Калькулятор круга

Калькулятор круга — это сервис, специально разработанный для расчета геометрических размеров фигур онлайн. Благодаря данному сервису Вы без проблем сможете определить любой параметр фигуры, в основе которой лежит круг. Например: Вы знаете объем шара, а необходимо получить его площадь. Нет ничего проще! Выберите соответствующий параметр, введите числовое значение и нажмите кнопку рассчитать. Сервис не только выдает результаты вычислений, но и предоставляет формулы, по которым они были сделаны. При помощи нашего сервиса вы без труда рассчитаете радиус, диаметр, длину окружности (периметр круга), площадь круга и шара, объем шара.

Вычислить радиус

Задача на вычисление значения радиуса – одна из самых распространенных. Причина тому достаточно проста, ведь зная этот параметр, вы без особого труда сможете определить значение любого другого параметра круга или шара. Наш сайт построен именно на такой схеме. Вне зависимости от того, какой вы выбрали исходный параметр, первым делом вычисляется значение радиуса и на его основе строятся все последующие вычисления. Для большей точности вычислений, сайт использует число Пи с округлением до 10-го знака после запятой.

Рассчитать диаметр

Расчет диаметра – самый простой вид расчета из тех, что умеет выполнять наш калькулятор. Получить значение диаметра совсем нетрудно и вручную, для этого совсем не надо прибегать к помощи интернета. Диаметр равен значению радиуса умноженному на 2. Диаметр – важнейший параметр круга, который чрезвычайно часто используется в повседневной жизни. Уметь его правильно рассчитать и использовать должен абсолютно каждый. Воспользовавшись возможностями нашего сайта, вы вычислите диаметр с большой точностью за доли секунды.

Читайте так же:
Обозначение сварных швов на строительных чертежах
Узнать длину окружности

Вы даже не представляете, как много вокруг нас круглых объектов и какую важную роль они играют в нашей жизни. Умение рассчитать длину окружности необходимо всем, от рядового водителя, до ведущего инженера-проектировщика. Формула для вычисления длинны окружности очень проста: D=2Pr. Расчет можно легко провести как на листке бумаги, так и при помощи данного интернет помощника. Преимущество последнего в том, что он проиллюстрирует все вычисления рисунками. И ко всему прочему, второй способ намного быстрее.

Вычислить площадь круга

Площадь круга – как и все перечисленные перечисленные в этой статье параметры является основой современной цивилизации. Уметь рассчитать и знать площадь круга полезно всем без исключения слоям населения. Трудно представить область науки и техники, в которой не надо было бы знать, площадь круга. Формула для вычисления опять же нетрудная: S=PR 2 . Эта формула и наш онлайн-калькулятор помогут Вам без лишних усилий узнать площадь любого круга. Наш сайт гарантирует высокую точность вычислений и их молниеносное выполнение.

Рассчитать площадь шара

Формула для расчета площади шара ничуть не сложнее формул, описанных в предыдущих пунктах. S=4Pr 2 . Этот нехитрый набор букв и цифр уже многие годы дает людям возможность достаточно точно вычислять площадь шара. Где это может быть применено? Да везде! Например, вы знаете, что площадь земного шара равна 510 100 000 километров квадратных. Перечислять, где может быть применено знание этой формулы перечислять бесполезно. Слишком широка область применения формулы для вычисления площади шара.

Расчет площади круга по диаметру

Используя этот онлайн калькулятор, вы сможете найти площадь круга зная его радиус, диаметр или длину окружности.

Воспользовавшись онлайн калькулятором для вычисления площади круга, вы получите детальное пошаговое решение вашего примера, которое позволит понять алгоритм решения таких задач и закрепить пройденный материал.

Найти площадь круга

Расчет площади круга по диаметруВыберите известную величину

Ввод данных в калькулятор для вычисления площади круга

В онлайн калькулятор вводить можно числа или дроби 3, 0.4, 5/7. Более подробно читайте в правилах ввода чисел.

Если у вас возникли трудности с преобразованием единиц измерения воспользуйтесь конвертером единиц расстояния и длины и конвертером единиц площади.

Теория. Площадь круга

Расчет площади круга по диаметру

Формулы для вычисления площади круга:

S = π r 2
S =1π d 2
4
●S =l 24 π

где S – площадь круга,
r – радиус круга,
d – диаметр круга,
l – длина окружности,
π = 3.141592

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Расчет площади круга по диаметру

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Калькулятор площади круга

Варианты расчёта площади круга через радиус или диаметр

Выбираем вариант расчёта площади

Визуально выглядит так:

Расчет площади круга по диаметру
Расчет площади круга по диаметру

Вводим диаметр или радиус:

Площадь круга равна :

Площадь круга с радиусом r равна πr2. Здесь символ π (греческая буква пи) обозначает константу, выражающую отношение длины окружности к её диаметру или площади круга к квадрату его радиуса. Поскольку площадь правильного многоугольника равна половине его периметра, умноженного на апофему (высоту), а правильные многоугольники стремятся к окружности при росте числа сторон, площадь круга равна половине длины окружности, умноженной на радиус (то есть 1⁄2 × 2πr × r).

Расчет площади круга по диаметру

Как рассчитать площадь круга по диаметру или радиусу, формулы

Найти площадь круга по диаметру или радиусу можно в нашем онлайн калькуляторе. Расчёты можно производить в любых единицах, в метрах(м), дециметрах(дцм), сантиметрах(см), миллиметрах(мм). Просто вводим цифры и получаем результат.

Окружность и круг — в чём отличие?

Окружность — замкнутая плоская кривая, все точки которой равноудалены от одной заданной точки — центра окружности.

Круг — бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.

Расчет площади круга по диаметру

Напомним: число π («пи») определяется как отношение длины окружности к ее диаметру . Это кратко выражается формулой для вычисления длины окружности , или . Другая известная формула, в которой встречается π, – формула площади круга , или . В принципе π можно было бы определить как отношение площади круга к квадрату радиуса. За этими формулами скрываются три нетривиальных математических факта:

Читайте так же:
Сравнить характеристики стиральных машин
1)длина окружности пропорциональна ее диаметру;
2)площадь круга пропорциональная квадрату радиуса;
3)коэффициенты пропорциональности в двух последних случаях совпадают.

Десятичная дробь, выражающая число π, бесконечна, хотя можно вычислить различные конечные дроби – десятичные приближения для π. Наиболее популярное приближение – с точностью до сотых: π ≈ 3,14.

Самое простое приближение для π полагает его равным 3 (несмотря на грубость этого приближения, его ошибка менее 5 %). Такое приближение использовалось, например, в Древнем Вавилоне в III–II вв. до н. э.: длину окружности находили по правилу, которое в современных обозначениях можно записать , площадь круга находили по правилу . Значение π = 3 используется и древними иудеями: библейский автор упоминает, что при строительстве храма при царе Соломоне мастер Хирам из Тира в числе других храмовых украшений «сделал литое из меди море, – от края его до края его десять локтей, – совсем круглое. и шнурок в тридцать локтей обнимал его кругом» (3 Цар 7, 23). Позже для более точных вычислений использовалось геометрическое приближение: от площади квадрата, описанного вокруг круга, отнимались площади треугольников с длиной стороны, равной трети стороны квадрата, получалось довольно точное значение

В Древнем Египте для вычисления площади круга использовалось правило , что соответствует значению . Ошибка при этом составляет менее 1 %. Как получали это правило, неизвестно.

У древнегреческих математиков с их превалирующим интересом к геометрическим построениям и доказательствам, а не к вычислениям, вопрос о численном значении π был не столь важным, нежели проблема квадратуры круга, т. е. построения квадрата, равновеликого данному кругу, если удастся, то с помощью циркуля и линейки, а в противном случае – с помощью каких-то других инструментов. Задача о квадратуре круга имела широкую известность не только среди математиков: например, о ней говорится в комедии Аристофана «Птицы».

Изучая задачу о квадратуре круга, Гиппократ Хиосский (V в. до н. э.) нашел некоторые случаи, когда с помощью циркуля и линейки можно найти квадратуру определенных частей круга, ограниченных кривыми линиями (а именно, двумя окружностями). Такие части называются луночками . Самый простой случай – это луночка между окружностью, описанной около равнобедренного прямоугольного треугольника, и другой окружностью, диаметром которой служит катет этого треугольника.

Нетрудно видеть, что, по теореме Пифагора, , а потому площадь круга, построенного на , равна двум площадям круга, построенного на , а значит, площадь полукруга, построенного на , равна площади четверти круга, построенного на . Поэтому, вырезав из этих фигур их общую часть – сегмент – получим равновеликие фигуры: таким образом, площадь луночки равна площади прямоугольного треугольника .

Древнейшие известные попытки собственно квадратуры круга принадлежат Антифонту и Бризону (V в. до н. э.). Антифонт последовательно вписывал в круг правильные многоугольники, каждый раз удваивая количество сторон, и полагал, что в конце концов многоугольник совпадет с окружностью. Бризон строил два квадрата – вписанный в окружность и описанный вокруг нее – и считал, что площадь квадрата, лежащего между ними, равна площади круга. Разумеется, в буквальном понимании и Антифонт, и Бризон заблуждались. Однако их идеи оказались весьма плодотворными: действительно, вписывая в окружность правильные многоугольники со все большим числом сторон, можно сколь угодно близко подойти к площади круга и длине окружности; смысл есть и в том, чтобы рассматривать не только вписанные, но и описанные многоугольники: при этом площадь круга будет лежать между площадями вписанных и описанных многоугольников, а длина окружности – между периметрами тех и других.

Читайте так же:
Фрезы по дереву для врезки замков

В дальнейшем именно вписанные и описанные правильные многоугольники стали активно применяться как для теоретических исследований, так и для конкретного вычисления числа π. Именно с помощью таких многоугольников было сформулировано строгое доказательство того, что площади кругов относятся как квадраты их диаметров, найденное, по-видимому, Евдоксом и приведенное в «Началах» Евклида. Архимед доказал, что площадь круга равна половине произведения длины окружности на ее радиус. Кроме того, с помощью вычисленных им периметров вписанных и описанных правильных многоугольников (от 6-угольника до 96-угольника) Архимед нашел, что:

или, в десятичных дробях, (подлинное значение ).

Таким образом, он не только нашел приближенные значения π, но и оценил точность этих приближений. Уже найденная Архимедом верхняя оценка, равная 22/7, дает приближение π с точностью 0,04 %. Эту дробь часто называют «архимедовым числом». Клавдий Птолемей, использовав правильный 720-угольник, нашел, что , что составляет приблизительно 3,14167 (ошибка меньше 0,003 %).

Как и для удвоения куба, и для трисекции угла, для квадратуры круга были изобретены методы, использующие свойства различных кривых. Общим свойством этих кривых было их образование путем сочетания двух типов движений – равномерного поступательного (вдоль некоторой прямой) и равномерного вращательного (вокруг некоторой точки или оси). При этом имеет место пропорциональность между углом, на который повернулся вращающийся элемент, и длиной отрезка, пройденной при поступательном движении.

Прежде всего, это была уже упомянутая квадратриса (см. урок, посвященный трисекции угла), которую впервые использовал для квадратуры круга Динострат. Оказывается, если – точка, в которой квадратриса пересекает отрезок , то четверть длины окружности, проходящей через точку , с центром в точке , равна длине отрезка .

Из этого следует, что длина дуги равна , а площадь круга радиуса равна площади прямоугольника со сторонами и ; такой прямоугольник легко построить с помощью циркуля и линейки, если известны отрезки и . Построив прямоугольник, можно построить и равновеликий ему квадрат.

Кроме квадратрисы, для квадратуры круга использовались связанные с ней винтовая линия и спираль Архимеда. Винтовая линия получается при движении точки по поверхности цилиндра, складывающемся из двух движений: во-первых, движения с постоянной скоростью вдоль оси цилиндра, а во-вторых, равномерного вращения по окружности основания цилиндра.

Спираль Архимеда – эта кривая, которую заметает точка , равномерно движущаяся вдоль радиуса , который, в свою очередь, равномерно вращается вокруг точки .

Задача, похожая на квадратуру круга, фигурировала и в Древней Индии. В уже упоминавшейся (см. урок по теореме Пифагора) книге «Шулва-сутра», излагавшей правила строительства алтарей, построение круга, равновеликого данному квадрату , производится так. Вокруг квадрата описывается окружность; пусть перпендикуляр к отрезку , проходящий через центр окружности , пересекает прямую и окружность в точках и , а точка делит отрезок в отношении . Тогда – радиус круга, равновеликого данному квадрату. Если – сторона квадрата, то длина полученного радиуса описанный способ соответствует приближенному значению π

В более поздние времена в Индии использовались приближения для π, равные (т. е. ≈ 3,162 – ошибка менее 1 %); 22/7 и даже 3,1416. Интересно наглядное доказательство предложения «площадь круга равна площади прямоугольника, стороны которого равны полуокружности и радиусу» у математика Ганеши (XVI в.). Как и в доказательстве теоремы Пифагора у Бхаскары, здесь все доказательство состоит из чертежа и слова «смотри». Ганеша делит круг на 12 секторов, а затем разворачивает каждый полукруг, состоящий из 6 секторов, в пилообразную фигуру, основание которой равно полуокружности, а высота – радиусу. Прямоугольник, о котором говорится в условии, получится при вставлении зубьев одной «пилы» в зазоры между зубьями другой. По-видимому, читатель должен был представлять себе, что круг разделен не на 12, а на столь большое число секторов, что эти секторы неотличимы от треугольников, составляющих «пилы».

Значение по-видимому, впервые появилось у китайского астронома и философа Чжан Хена (нач. II в. н. э.); вероятно, из Китая оно перешло к индийцам (Брахмагупта, VII в.) и арабам (ал-Хорезми, IX в.); впрочем, метод получения этого значения нам неизвестен. Лю Хуэй (III–IV вв.) с помощью рассмотрения вписанных и описанных многоугольников (в том числе с 3072 вершинами) пришел к приближению , а Цзу Чун-чжи (V в.) доказал, что

Читайте так же:
Соединители для проводов и кабелей 220 вольт

Самаркандский математик ал-Каши в «Трактате об окружности» (1424 г.) поставил себе задачу выразить окружность через диаметр с такой точностью, чтобы погрешность в длине окружности, равной 600 000 диаметров Земли, не превосходила толщины волоса. Рассмотрев правильные многоугольники вплоть до фигуры с 805 306 368 (3 ∙ 2 28 ) вершинами, ал-Каши нашел 16 верных знаков (после запятой) числа π, а именно, приближение (в реальности 17-й знак после запятой – 3 или 4, потому что 18-й – 8). Европейские математики достигли такой точности и превзошли ее лишь в конце XVI в.: в 1597 г. голландец вычислил 17-й знак, для чего применил многоугольник с 1 073 741 824 (2 30 ) вершинами.

В начале XVII в. профессор математических и военных наук Лейденского университета Лудольф ван Цейлен довел количество точных знаков (после запятой) числа π до 35. Современники называли найденное им приближение π «числом Лудольфа». Эти знаки он завещал выбить на надгробном камне. Интересно, что, поскольку в то время привычная нам позиционная запись десятичных дробей еще не вполне прижилась, на надгробии было написано не 3,14159265358979323846264338327960288, а

Еще два голландца XVII в. – В. Снеллиус и Х. Гюйгенс – с помощью некоторых тонких геометрических рассуждений смогли достичь большей точности при меньшем числе сторон рассматриваемых многоугольников. Снеллиус воспроизвел результат Архимеда – три верных знака после запятой – рассматривая не более чем а с помощью получил целых 7 верных знаков. Гюйгенс, доказав некоторые геометрические теоремы, смог вычислить 10 верных знаков с помощью 60-угольника.

Далее метод вписанных и описанных многоугольников уступил место новым методам, разработанным с помощью математического анализа – использованию бесконечных сумм, которые дают приближенные значения числа π нужной точности, если оставить в них достаточно большое, но лишь конечное число членов. В результате число верных знаков быстро возросло: вычислители подбирали формулы поудобнее и соревновались друг с другом в том, кто больше получит этих знаков.

Рекорд для XIX в. поставил Уильям Шенкс, нашедший в результате 707 знаков после запятой; в 1-ой половине XX в. эти знаки часто воспроизводили в популярной литературе, а архитекторы даже украшали ими свои сооружения (Дом занимательной науки в Ленинграде, ныне Санкт-Петербург, 1934; Дворец открытий в Париже, 1937). В 1945 г. результаты Шенкса были проверены на компьютере, и оказалось, что из его знаков верны только первые 527. Компьютеры позволили существенно увеличить количество точных цифр в десятичном разложении π, причем, если раньше вычислители тратили на них многие годы, то теперь компьютеры справлялись с этим менее чем за день работы. Этому также способствовало применение более эффективных алгоритмов на основание новых математических формул.

Само обозначение π для отношения окружности к диаметру было введено в 1706 году У. Джонсом.

Что касается принципиальных математических результатов относительно π, то здесь следует упомянуть, во-первых, доказательство иррациональности этого числа, проведенное в 1766 г. И. Г. Ламбертом (некоторый пробел в доказательстве Ламберта был восполнен в 1800 г. А. М. Лежандром), а во-вторых, доказательство трансцендентности π, осуществленное в 1882 г. К. Ф. Линдеманом. Трансцендентность некоторого числа означает, что оно не может быть корнем никакого уравнения вида с целыми коэффициентами . Из этого следует, что оно не может быть представлено в виде конечной комбинации целых чисел, арифметических действий и знака извлечения корня. Поэтому и квадратура круга не может быть решена с помощью циркуля и линейки, которые позволяют строить лишь отрезки, выражаемые через арифметические действия и квадратные корни.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector