Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Краткая теория резки и гибки листового металла

Краткая теория резки и гибки листового металла

Ниже Вы найдете полезную информацию для определения оптимальных качественных параметров инструмента для операций гибки и резки листового металла.

ПРОЦЕСС ГИБКИ

Большинство процессов обработки листового металла, включают формообразование заготовки. Различные типы процессов гибки широко используются в широком спектре продукции: автомобильные компоненты, мебель, двери, детали для железнодорожного транспорта, строительства, авиации, электроники, телефонии, судостроения и т.д.. Мы можем сказать с полным основанием, что процесс гибки листов найдет свое место в подавляющем большинстве продукции. Несмотря на кажущуюся простоту, процесс гибки является весьма сложной производственной технологией, которую требуется понимать, и грамотно использовать в производстве.

Гибка — пластическое деформирование листового металла под действием внешней силы.

гибка

εp = пластическая деформация,
εe = обратное пружинение.

При промышленном изготовлении деталей, одной из важнейших задач является обеспечение жестких геометрических допусков в готовой продукции. Идеальный гиб определяется тремя основными факторами:

• Точный угол гиба (ß теоретический против ß реального),
• Постоянный угол гиба на всей длине детали,
• Плоскостность отгибаемой полки по всей длине гиба.

“ВОЗДУШНАЯ” ИЛИ СВОБОДНАЯ ГИБКА

Возд. гибкаСреди процессов гибки V-типа, “воздушная” гибка является наиболее простым методом и широко используется в широком диапазоне производственных процессов. Процесс “воздушной” гибки обеспечивается точным перемещением пуансона по отношению к V-образной матрице. Таким образом, листовой металл сгибается, создавая угол в точке контакта между пуансоном и листом. Листовой металл имеет 3 точки контакта с пуансоном и матрицей. Угол гиба определяется тем, насколько глубоко пуансон вошел внутрь матрицы. Обратное пружинение компенсируется увеличенным ходом пуансона, что позволяет листу вернуться к требуемому углу гиба (перегиб листа) после снятия нагрузки. Преимуществами “воздушной” гибки являются: низкое усилие гибки, возможность гибки очень толстых листов и возможность получения различных углов гибки используя одни и те же инструменты. Эти преимущества делают этот метод менее дорогим и более гибким. “Воздушная” гибка характеризуется сложностью достижения точного угла в связи с наличием эффекта обратного пружинения, а также необходимостью использовать высокотехнологичные прессы, чтобы гарантировать отличную точность гибки.

Таблицы расчета усилия F при «воздушной» гибке.

Усилие гибки

, где
F — требуемое усилие на 1 м пуансона, тонн
r — внутренний радиус, мм.,
b — минимальной высоты отогнутой полки, мм.,
g — толщина материала, мм.,
V — ширина ручья (раскрытия матрицы), мм.

Таблица1

Пример: Листовая сталь с пределом прочности RM 430-500 МПа с толщиной 6 мм можно согнуть на размере матрицы V=50 мм, минимальная кромка — 35 мм, внутренним радиусом 8 мм, необходимое усилие гибки составит 48 тонн на метр пуансона.

Соответственная таблица для нержавеющей стали…

Таблица2

Для более конкретного случая воспользуйтесь файлом: Расчет требуемого усилия гибки

КАЛИБРОВКА ИЛИ ЧЕКАНКА (гибка до полного касания инструментов)

чеканкаПри использовании метода чеканки, пуансон через лист полностью касается матрицы, это обеспечивается тем, что поверхности пуансона и матрицы повторяют друг друга. Чеканка в основном используется для изготовления деталей с углом 90 градусов на тонком листе, где требуется малый радиус гиба. Гиб обеспечивается, прессованием детали в матрице, так что листовой металл точно повторяет профиль матрицы. Учитывая сильную пластическую деформацию обратное пружинение сведено к минимуму. Преимуществами данного метода являются высокая точность угла, минимальное обратное пружинение, возможность получать минимальный радиус гиба. Основными недостатками метода являются необходимость наличия наборов инструментов для каждого угла и радиуса, а также необходимость использования увеличенного усилия (в 3-10 раз по сравнению с “воздушной” гибкой).

ПЛЮЩЕНИЕ

плющение

Как правило, метод применяются для увеличения жесткости детали и для создания безопасной кромки. Процесс выполняется в 2 шага: сначала предварительная гибка с углом 26 ° -35 ° (“воздушная” гибка), оконча-тельное плющение, полностью или частичное, в зависимости от приложенного усилия.

ПРОЦЕСС ГИЛЬОТИННОЙ РЕЗКИ

Гильотинная резка представляет собой процесс прямолинейной резки листового металла. Материал разрезается между противоположными кромками двух лезвий. Предварительно лист фиксируется с помощью прижимных цилиндров. Во время процесса резки подвижное лезвие двигается по отношению к неподвижному лезвию с определенным зазором между ними, который определяется условиями резки. Подвижное лезвие может быть установлено под углом по отношению к неподвижному для того, чтобы резка велась последовательно от одной стороны к другой, этот угол называется углом между лезвиями, и это уменьшает усилие резки, но увеличивает ход подвижного лезвия.

Что касается самой гильотины, то, машина состоит из станины со столом, системы прижима листа, верхнего и нижнего лезвия и заднего упора. Задний упор обеспечивает требуемый размер отрезаемой детали.

Задний угол верхнего лезвия незначительно влияет на усилие резки. При использованием двух лезвий с четырьмя режущими кромками требуется более высокое усилие резки, чем когда верхняя лезвие отшлифованы с небольшим задним углом, этот угол, как правило, не более 3°.

Читайте так же:
Овощи которые выкапывают лопатой из земли

Угол между лезвиями значительно влияет на усилие резки и влияет на дефекты, которые возникают при резке узких полос. Данный угол — менее 3°.

Лезвия2

Зазор между лезвиями — это расстояние (перпендикулярное) между лезвиями. Чистота резки зависит от толщины листа и прочности материала. Точные значения зазора должны быть определены для каждого конкретного случая. Если зазор слишком маленький, то наблюдается увеличенный износ лезвий: затраты на переточку инструмента и усилие резки будет выше. Если зазор слишком большой, то материал сминается между двумя лезвиями. В результате отрезаемая кромка будет с увеличенным конусом и большими пластическими деформациями. Зазор — ключевой фактор для получения качественной кромки.

Дефекты готовых изделий из листового металла в результате резки:

  • дефект скручивания,
  • дефект саблевидности,
  • дефект изгиба
  • дефект непрямолинейной кромки.

Дефект1

ДЕФЕКТ САБЛЕВИДНОСТИ

Этот дефект выражается в изгибе отрезанной детали в плане (поверхность остается плоской) после резки. Это связано с шириной детали, ее толщиной, прочности материала и направления линий прокатки (остаточные напряжения). Для уменьшения этого дефекта рекомендуется использовать меньший угол между лезвиями и выполнять резы вдоль направления линий прокатки.

ДЕФЕКТ СКРУЧИВАНИЯ

Этот дефект выражается в скручивании готовой детали вдоль ее оси после резки. Этот дефект возникает обычно,при резке узких полос. Условия резки, которые усиливают этот дефект, связаны с геометрией листового металла (большая толщина, малая ширина, короткая длина), характеристик материала (мягкий материал, неравномерное распределение напряжений) и, конечно, параметры резки (большой угол между лезвиями, высокая скорость резки).

Дефект2

ДЕФЕКТ ИЗГИБА

Этот дефект выражается в изгибе отрезанной детали (деталь не плоская), после резки. Этот дефект обусловлен углом между лезвиями и жесткостью заготовки. Для уменьшения этого дефекта рекомендуется использовать меньший угол между лезвиями и поддерживать отрезаемую заготовку.

ДЕФЕКТ НЕПРЯМОЛИНЕЙНОЙ КРОМКИ

Разрезаемый материал пластически деформируется в очень небольшой области, которая формирует остаточную деформацию. Область чистой кромки, где верхний нож проникает в материал до образования трещин, которые в свою очередь ведут к образованию грубой и нерегулярной поверхности известной как область трещин. Область трещин распространяется до области заусенцев, которые появляются на завершающем этапе резки и зависят от зазора, характеристик металла и состояния инструмента.

Гибка металла

Гибка — один из наиболее востребованных видов обработки металлов, в процессе которой прямолинейной заготовке придается изогнутая форма. Гибка экономична, она позволяет получать детали нужной формы, не прибегая к более затратным методам обработки — штамповке и сварке. Результатом гибки могут быть изделия L-образные (с одним углом) и П-образные (с двумя углами), а также детали сложной формы с несколькими углами (многоугловая гибка пластичного металла). В условиях промышленного производства широко применяется радиусная гибка, которая позволяет изгибать листовой металл и трубы под заданным углом. Радиусная гибка выполняется на листогибочных прессах.

Способы гибки листового металла

Выделяют два способа гибки заготовок из листового металла: свободная (воздушная) гибка и калибровка. Первый способ наиболее востребован в металлообработке. В процессе свободной гибки между стенками V-образной матрицы и заготовкой остается воздушный зазор. Калибровка отличается от воздушной гибки тем, что зазор между стенками матрицы и заготовкой отсутствует, к матрице она прижимается плотно.

Воздушная (свободная) гибка

При воздушной гибке при помощи траверсы с пуансоном заготовка из листового металла вдавливается по оси Y на необходимую глубину канавки матрицы. Как уже было сказано выше, между стенками матрицы и заготовкой остается зазор. Получается так, что угол гибки заготовки зависит не от геометрии используемой матрицы, а от положения инструмента по оси Y. Современное оборудование позволяет производить его настройку с точностью до 0,01 мм, но прямой зависимости между ординатой и углом гибки нет. Это объясняется зависимостью оптимальной глубины опускания пуансона от предела прочности, толщины и деформационного уплотнения заготовки, состояния матрицы, а также настроек хода опускания траверсы.

Свободная гибка рекомендована для листового металла толщиной 1,25 мм и более. Минимальный внутренний радиус гибки обязательно должен быть больше, чем толщина заготовки (исключение — легко деформируемые металлы). К преимуществам метода относят гибкость настроек и экономичность. Недостатки — меньшая точность угла изгиба при обработке тонких заготовок, возможность неточного повторения геометрии при использовании неоднородного материала, а также невозможность выполнять специфические гибочные операции.

Калибровка

В отличие от свободной гибки, калибровка позволяет получать высокую точность угла гиба, так как заготовка, независимо от толщины и свойств материала, повторяет форму матрицы. Но для выполнения операции гибки необходимо прилагать усилие в 3 – 10 раз большее, чем при воздушной гибке. Метод дает возможность работать с Z-образными профилями, получать большой внешний и небольшой внутренний радиусы, получать глубокие U-образные каналы, создавать различные формы, используя полиуретановые матрицы и стальные пуансоны при работе с листовым металлом толщиной до 2 мм.

Читайте так же:
Производство стали мартеновским способом

Недостатки калибровки заключаются в отсутствии гибкости настроек, то есть, в необходимости изготовления матрицы под конкретный вариант заготовки и ее гибки. К тому же большое усилие, прилагаемое при гибке, уменьшает срок службы матрицы и требует её более частой замены.

Специфика гибки металлов с низкой пластичностью

Заготовки из металлов с низкой пластичностью (содержание углерода более 0,5%) после гибки могут пружинить. В результате конфигурация готовой детали не соответствует чертежу. Угол, на который отрабатывает деталь после снятия рабочей нагрузки, может составлять 12 – 150 градусов, из-за чего соединение смежных элементов сопряжено со сложностями. Чтобы ликвидировать эту погрешность, вносят изменения в параметры матрицы и рабочей части пуансона. Возможно также повышение пластичности металла путём предварительного отжига заготовки. Для низкоуглеродистых сталей температура отжига может составлять от 600 до 2000 градусов, для высокоуглеродистых — от 570 до 6000 градусов по шкале Цельсия. Еще один вариант повышения пластичности металла заключается в гибке нагретых заготовок. Но этот способ существенно снижает производительность, так как требует очистки от окалины поверхностей матрицы и самой детали.

Гибка труб по радиусу

К гибке труб по радиусу прибегают для сокращения количества сварных швов и, соответственно, повышения качества монтажных работ.

Стоит учитывать, что при изгибании заготовки с внешней стороны под воздействием радиальных сил волокна металла растягиваются, что может привести к нарушению их целостности и образованию разрывов. С внутренней стороны сгиба металл сдавливают тангенциальные силы, что также может отрицательно сказаться на результате процесса (образование складок, неровностей, гофрирование металла).

Для труб малого диаметра чаще используют холодную гибку. Трубы большого диаметра нуждаются в предварительном разогреве изгибаемого участка с целью повышения пластичности металла и, соответственно, снижения риска возникновения дефектов, вызванных силами растяжения и сжатия. В любом случае необходимо досконально знать все нюансы технологического процесса, уметь рассчитать необходимые нагрузки, спроектировать инструмент применительно к конкретному материалу и конфигурации детали на выходе.
Одним из важнейших параметров при расчете процесса гибки металла является минимально допустимый радиус. Для его определения учитывают толщину металла, параметры материала заготовки и способ ее изготовления. Произвести необходимые расчеты позволяют ГОСТы и отраслевые стандарты. Так, к примеру, нормативы для листовой стали толщиной до 3 мм прописаны в ОСТ 1 00286-78. Требования к радиусам при гибке профилей содержатся в ГОСТ 30245-2012, а к параметрам самих профилей, получаемых с помощью гибки, в ГОСТ 11474-76.

Завод ОПС (Москва) оказывает услуги гибки металла и других видов металлообработки на современном высокотехнологичном оборудовании.

Пуансон и матрица

Для того чтобы изготовить изделия из металла сегодня применяется специализированное оборудование. Без использования соответствующей оснастки изготовить некоторые детали, с учетом максимальной точности их размеров, практически невозможно. Именно поэтому штампы, прессы, а также другие приспособления оснащаются пуансонами и матрицами.

Как известно, без соблюдения идеальной точности размеров изделия, ни о каком высоком качестве продукции даже не может идти и речи. Это же касается и внешнего вида детали, что во многих случаях также очень важно.

Что такое матрица и пуансон

Пуансон и матрица листогибочного пресса

Матрица – это специальный металлический короб, придающий форму для будущей детали или изделия. В ней полностью отсутствует крышка, а стенки строго параллельны.

Сегодня можно использовать матрицы, предназначенные только для какого-то определенного вида изделия (простые), а также для большего количества типов продукции (комбинированные). К последним прибегают гораздо реже, чем матрицам простого типа, которые широко применяются в строительной и других сферах. С их помощью изготавливается различная продукция, среди которой пустотелые кирпичи, блоки и т д.

Пуансон (другое название пресс-штемпель) представляет собой особую конструкцию, которая полностью совпадает с профилем матрицы. Иными словами, он образует будущее изделие с верхней стороны, выполняя функцию пресса, маркировщика или штампа. С помощью такой системы можно выполнять выдавливание детали, нанесение маркировки (в зеркальном или обычном виде), либо штамповку. Чаще всего пуансоны используются в сфере обработки металла (например, для прессования, гибки листового металла), изготовления различных строительных материалов (шлакоблоков, газобетонных блоков различных типов) и других.

Виды и типы (по материалу, конструкции, применению, назначению)

В зависимости от типа конструкции и назначения, пуансоны бывают:

  • прошивными;
  • пробивными;
  • вырубными;
  • просечными

С помощью пуансона заготовка продавливается через матрицу. Весь рабочий процесс проходит в условиях высокого давления, а при горячей обработке – еще и температурного воздействия. Исходя из этих, а также других особенностей, используются определенные материалы, которые обеспечивают высокую точность изделий, а также отсутствие деформации самой системы. Все это позволяет работать длительное время без необходимости замены.

Читайте так же:
Что измеряют в микронах

Они изготавливаются из следующих материалов:

  • Высокопрочные стали с высоким уровнем износоустойчивости. Чаще всего применяются при горячих процессах работ, что обеспечивает максимальный уровень стойкости штампа.
  • Стали высоких прочностей. В основном, используются при холодных рабочих процессах. Все материалы, которые используются для изготовления пуансонов данного типа, в обязательной степени должны обладать максимальным уровнем износоустойчивости, прочности, а также антикоррозийными свойствами. В данном случае легированные стали не подойдут, поскольку они не отвечают всем требованиям, и после регулярных температурных воздействий становятся чрезмерно хрупкими для таких работ.
  • Полиуретан – это высококачественный современный полимерный материал, который отличается повышенной износостойкостью, прочностью, а также эластичностью и твердостью.

Особенности

Любые станки промышленного назначения отличаются не только простотой в работе и обслуживании, но также практичностью и долговечностью. Однако для того, чтобы пуансоны и матрицы служили максимально длительные сроки, необходимо постоянно следить за оборудованием, особенно, касаемо очистки рабочего пространства и оборудования после работы.

Что касается рабочей поверхности пресса или станка, их необходимо регулярно чистить и обслуживать. Таким образом будет гарантирована длительная бесперебойная работа.

Однако не следует забывать, что даже при самом лучшем отношении к станкам вам все ровно придется часто менять различные расходные части матриц и пуансонов, поскольку они относятся к категории быстроизнашивающихся. В среднем срок эксплуатации пуансона и матрицы от 4 до 6 лет (зависит непосредственно от условий использования и специфики работ).

Что касается размеров и форм составных частей матриц и пуансонов, они могут существенно отличаться, в зависимости от особенностей запланированных работ. Если более конкретно, их конфигурация будет зависеть от размеров, типа, а также формы бетонного или металлического изделия, которое планируется изготавливать с помощью данного оборудования.

пуансон и матрица в разрезе

Для качественного результата с максимальной точностью необходимо постоянно следить за рабочей поверхностью штамповочных станков и прессов. Нужно, чтобы она была ровной без трещин, заусенцев, пробоин, выступов, зазоров и других деформаций. Все это самым прямым образом будет влиять на конечное качество и размер будущего изделия.

С этой целью пуансоны цилиндрического типа часто подвергают шлифовке (черновой и чистовой), а также заточке и полировке. Пуансоны фасонного назначения производятся путем оттиска с обязательным процессом закалки (на протяжении 8 минут деталь находится под воздействием температуры 780 градусов) и финишной обработки. Все это обеспечивает идеальную четкость оттисков и гладкость поверхности.

При работе с деталями с широким контуром обычно используются фрезерные или строгальные станки. С их же помощью также изготавливаются матрицы, учитывая особенности и точные размеры изделий. Прессовальные формы, которые изготовлены с соблюдением норм производства, обеспечивают максимально точную линию среза, притом, что сам штамп в процессе эксплуатации изнашивается в минимальной степени.

С помощью матриц и пуансонов можно производить однотипные детали в больших объемах без необходимости проверки каждой из них на предмет соответствия размеров. При этом каждое отдельно взятое отверстие имеет конкретные параметры, согласно которым производится вытеснение, вырезание и другие манипуляции. После этого деталь совершенно не обязательно подвергать дополнительным обработкам. Иными словами, весь процесс изготовления продукции требует всего 1-2 действия, позволяя существенно сэкономить время.

Зазор между матрицей и пуансоном

Контроль зазора между матрицей и пуансоном — это очень важный момент, от которой напрямую зависит конечный результат.

  • Если зазор слишком мал, поверхность среза будет слоиться и рваться, с заусенцами и неровностями.
  • При слишком большом зазоре тонкий материал будет втягиваться с последующим его разрывом. В таких условиях изделие получит затянутые края, а также заусенцы. При повышенной толщине материала, в готовом изделии могут наблюдаться слегка закругленные кромки.
  • Согласно соответствующим правилам и нормам, разрешается производство деталей при зазоре 30% максимум от толщины, а также острых режущих краях.

Сам по себе зазор всегда непосредственно зависит от толщины и особенностей материала. Он может колебаться в пределах от 0,5 мм до 12 миллиметров, а также от 4 до 16% от толщины заготовки.

Вы сможете обеспечить действительно идеальную точность конечной продукции только в случае, если зазор между матрицей и пуансоном будет правильно определен и настроен. Здесь также важнейшую роль играет уровень остроты кромок. Если все настроено правильно, в соответствии с нормами, изготавливаемая деталь получает размеры, точно соответствующие техническому проекту.

Обеспечиваем клиентов качественной продукцией

На производственном предприятии Rival Laser применяют самые современные технологии и оборудование. К примеру, вот применение пуансона и матрицы при гибке листового металла автономном панелегибе Salvagnini.

Читайте так же:
Предел текучести стали 40х

Используя на своем оборудовании только качественные пуансоны и матрицы, изготовленные согласно всем правилам и нормам, компания Rival Laser существенно экономит Ваше время, средства и нервы. Мы изготавливаем продукцию с максимальной точностью и в строгом соответствии с Техническим заданием клиента.

Оставьте заявку на быстрый расчет

Минимальный заказ от 15 000 руб. без учета стоимости металла.

Металлообработка — основной вид деятельности компании «Риваль Лазер».

Мы специализируемся на работе с черными и цветными металлами и предлагаем весь цикл услуг их обработки: от резки и гибки заготовок до порошковой покраски и дробеструйной обработки.

Мы предлагаем выгодные условия сотрудничества для предприятий металлургической, машиностроительной и других отраслей производства и работаем по всей России, СНГ и Европе.

Рекомендации по выбору гибочного инструмента Часть II

В первой части этой серии рассматривались минимальные требования к инструменту и системе зажима, а также некоторые аспекты выбора пуансона.

Правила выбора пуансона

В случае изготовления L-образных деталей таких правил нет. Пуансон практически любой формы выполнит свою функцию. Таким образом, выбирая пуансоны для группы деталей, всегда следует рассматривать детали L-образной формы в последнюю очередь, принимая во внимание тот факт, что для их изготовления подойдет пуансон практически любой формы.

При изготовлении таких L-образных деталей используйте пуансон, который также можно применять для производства других деталей, вместо того чтобы добавлять лишние инструменты в комплект инструментов. Помните, что при выборе инструмента меньше всегда лучше, учитывая не только аспект минимизации затрат на инструмент, но также и сокращение времени наладки благодаря уменьшению количества инструментов необходимой формы на рабочем месте (см. рис. 1).

Для деталей другой формы правила выбора пуансона все-таки существуют. Например, в случае изготовления J-образных деталей эти правила следующие (см. рис. 2):

  • Если небольшая верхняя часть длиннее, чем нижняя, потребуется рихтовочный пуансон.
  • Если небольшая верхняя часть короче, чем нижняя, подойдет пуансон любой формы.
  • Если небольшая верхняя часть имеет такую же длину, как нижняя, потребуется остроконечный пуансон.

Как вы заметили, правила выбора пуансона связаны в основном с особенностями заготовки, и именно поэтому важную роль здесь может играть программное обеспечение, моделирующее процесс гибки. Если у вас нет программного обеспечения, моделирующего процесс гибки, можно воспользоваться чертежами поставщика инструмента с размерной сеткой на заднем плане, чтобы проверить влияние пуансона вручную (см. рис. 3).

Правила изготовления Z-образных профилей

Если вы используете обычный набор инструментов, для изготовления Z-образных профилей потребуется два прохода траверсы. Для изготовления деталей такой формы правила следующие (см. рис. 4):

  • Размер центральной части (полки) должен быть больше, чем половина ширины корпуса V-образной матрицы; обратите внимание, что это ширина всего корпуса матрицы, а не канала V-образной матрицы.
  • Боковая часть должна быть меньше, чем сумма высоты V-образной матрицы и высоты райзера.
  • Если размер центральной части (полки) меньше, чем половина ширины корпуса V-образной матрицы; для формирования обоих сгибов за один проход балки потребуется специальный инструмент. Преимуществом использования этих листогибочных инструментов является то, что не требуется переворачивать заготовку. Недостатком является то, что для их применения требуется усилие в три раза превышающее стандартное усилие воздушной гибки

Правила, касающиеся гибки деталей с вырезами и угловыми надрезами

Любой материал, не имеющий опоры внутри V-образных матриц, подвержен деформации; в случае отверстий или других вырезов эта деформация проявляется в форме вздутий (см. рис. 5). Когда отверстия рядом с линией изгиба небольшие, соответствующее вздутие также небольшое. Кроме того, для большинства применений допустимы некоторые искажения формы, поэтому окончательного правила выбора наилучшей ширины V-образной матрицы, когда вырез находится на линии сгиба или рядом с ней, не существует.

Когда фланцы, вырезы и угловые надрезы располагаются слишком близко к линии сгиба с учетом толщины металла, можно использовать качающуюся матрицу. Качающиеся матрицы вращаются и поддерживают материал в течение всего процесса гибки, предотвращая тем самым вздутие.

image (12).jpg
Рис. 1. Для изготовления многих деталей форма пуансона не является ограничивающим фактором при гибке.

На рис. 5 показаны идентичные детали с вырезами, расположенными рядом с линией сгиба; на переднем плане деталь с показательным вздутием, которая была изготовлена с помощью обычной V-образной матрицы, а на заднем плане – деталь, изготовленная с использованием качающейся матрицы. Обратите внимание также на то, что овалы слева имеют одинаковую ширину (от передней до задней кромки) и располагаются на одном расстоянии от линии сгиба; только их длина разная. На более длинном овале явно видно большое вздутие.

Читайте так же:
Требования предъявляемые к предохранительным поясам

Высота пуансона для заданной глубины профиля

Высота пуансона становится критически важным параметром при изготовлении трех- и четырехсторонних профилей. В некоторых случаях короткие пуансоны можно использовать для изготовления трехсторонних профилей, если одна из сторон может свисать с листогибочного пресса во время окончательной (третьей) гибки. Если требуется изготовить четырехсторонний профиль, необходимо выбрать пуансон с высотой, большей чем высота профиля, измеренная по диагонали (см. рис. 6):

Минимальная высота пуансона для изготовления профилей = (глубина профиля/0,7) + (толщина траверсы/2)

Если верхние (возвратные) фланцы отсутствуют или они выдаются вперед, для снятия детали после гибки не требуется большого зазора между нижним и верхним штампом. Однако, если возвратные фланцы (сдвинутые назад верхние фланцы) имеются на всех четырех сторонах, необходим достаточный зазор, чтобы повернуть и снять профиль после гибки.

Сочетание гибки и подгиба

Инструменты для гибки и подгиба позволяют изготавливать детали с подогнутыми кромками за один проход, как показано на рис. 7. Но помните, что для подгиба кромок листа толщиной более 0,125 дюйма (3,2 мм), могут потребоваться специальные инструменты, рассчитанные на требующиеся повышенные усилия.

В этом случае правила выбора V-образной матрицы, в целом, такие же, как для стандартных листогибочных инструментов. Для предварительного изгиба на 30 градусов, требующегося для подгиба, в связи с острыми углами, необходимы фланцы несколько большей длины, размер которых составляет примерно 115% от размера канала V-образной матрицы. Например, для гибки материала с использованием V-образной матрицы размером 0,375 дюйма (9,5 мм), необходим фланец длиной, как минимум, 0,431 дюйма (0,375 × 1,15) или 10,9 мм.

Детали без царапин

Почти все обычные листогибочные V-образные матрицы оставляют царапины на деталях, просто потому что металл втягивается в матрицу в процессе гибки. В большинстве случаев эти царапины минимальные и допустимые, а увеличение радиуса приложения усилия может уменьшить их количество.

image (13).jpg
Рис. 2. Для определенных J-образных деталей применяются особые правила выбора пуансона. Если небольшая верхняя часть имеет такую же длину, как нижняя, потребуется остроконечный пуансон (показан слева). Если небольшая верхняя часть длиннее, чем нижняя, потребуется рихтовочный пуансон (показан справа).

Для областей применения, в которых недопустимо даже минимальное количество царапин, например при гибке окрашенных или полированных материалов, можно использовать нейлоновые вставки для предотвращения появления царапин (см. рис. 8). Гибка без царапин особенно важна при изготовлении критически важных деталей в аэрокосмической промышленности, так как при визуальной проверке инспектору очень трудно отличить царапину от трещины.

Простота – это достоинство

Современный прецизионный инструмент и листогибочные прессы могут обеспечивать непревзойденную точность. При использовании надлежащих инструментов и материалов стабильного качества листогибочные прессы позволяют загибать фланцы под заданным углом с требуемым внутренним радиусом изгиба. Однако подчеркнем еще раз, что создаваемый при воздушной гибке внутренний радиус изгиба составляет измеряемую в процентах долю от размера канала матрицы, и поэтому очень важно использовать надлежащие инструменты. Соблюдение требований, в которых указывается множество различных радиусов с жесткими допусками, приводит к росту затрат на инструмент. И чем больше инструментов требуется, тем больше объем работ по перенастройке пресса, что приводит к дополнительному увеличению затрат.

Учитывая все вышесказанное, разработчики технологий обработки листового металла могут упростить выбор инструмента и весь процесс гибки, следуя нескольким основным правилам при проектировании деталей:

  1. Внутренний радиус изгиба должен быть в 1,5 раза больше толщины металла.
  2. Длина фланца должна быть, как минимум, в 6 раз больше толщины металла. Это применимо также и к отверстиям в детали; то есть, отверстия должны располагаться в стороне от линии сгиба на расстоянии, как минимум, в 6 раз больше толщины материала.
  3. Размер полки Z-образного профиля должен быть, как минимум, в 10 раз больше толщины металла.

Существует множество исключений для этих правил, и каждое имеет свои ограничения. Можно использовать более узкий канал V-образной матрицы, чтобы изготовить детали с меньшим радиусом изгиба или более коротким фланцем, однако при слишком маленьком радиусе изгиба появляется риск искажения линии сгиба и превышения предельно допустимой нагрузки инструмента и листогибочного пресса. Можно изготовить деталь с более узким смещением, но опять-таки для этого потребуется специальный инструмент и значительное усилие, прикладываемое при гибке.

Но к чему усложнять, если не требуется изготавливать деталь с коротким фланцем, узким смещением или малым радиусом? Следуя этим трем простым правилам, вы улучшите угловые характеристики, сократите время наладки и уменьшите затраты на инструмент.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector