Montagpena.ru

Строительство и Монтаж
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемотехника блоков питания персональных компьютеров. Часть 1

Схемотехника блоков питания персональных компьютеров. Часть 1.

Блок питания компьютера

Один из самых важных блоков персонального компьютера — это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

Упрощённая структура импульсного блока питания персонального компьютера

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Схема сетевого фильтра и выпрямителя БП ПК

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Плата с неустановленными элементами фильтра

Как говорится: "No comment ".

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 ("230/115"). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Читайте так же:
Термофены для пайки радиодеталей

Принцип работы импульсного блока питания на шим

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ НА UC3843

Принцип работы ШИМ контроллера UC3843 практически такой же как у UC3845, подробно расписанный в ЭТОЙ СТАТЬЕ. Единственное отличие — в структуре микросхемы UC3843 отсутствует D-триггер, делящий тактовую частоту на два и отсекающий каждый второй импульс внутреннего генератора. Таким образом управляющий импульс может достигать 95-98% от общего периода, а частота преобразования равна частоте задающего генератора.
Подобная схемотехника позволяет использовать данный ШИМ контроллер при проектировании обратноходовых и бустерных источников питания, а довольно мощный выходной каскад (ток до 1 А) легко справляется с сравнительно мощными полевыми транзисторами.
В данной конструкции использовалась почти вся комплектация с Али, поэтому ссылок на Али будет довольно много. Однако кое что покупалось и на Ростовском радиорынке.
При разработке данных блоков питания ставилось две задачи основных + несколько опытов для дальнейших разработок на базе UC3843, поэтому кое что выглядит не совсем так, как должно выглядеть.
Первая версия, впрочем как и третья предназначена для нагрузки 1. 1,5 Ампера долговременно и без принудительного охлаждения.
Сразу оговорка — обратноходовые блоки питания не любят холостой ход и это сказанно как в прямом, так и в переносном смысле. Дело в том, что в момент закрытия силового транзистора первичная обмотка за счет самоиндукции формирует довольно большой выброс напряжения, который без нагрузки может довольно легко убить силовой транзистор. На фото ниже осциллограмма на стоке силового транзистора при питании преобразователя от 220 вольт:

Напряжение на стоке силового транзистора

На щупе включен делитель 1/10, при развертке 10 вольт на деление не трудно посчитать, что выбросы превышают 600 вольт. Именно по этой причине важен правильный выбор элементов в цепи клампера блоков питания данного типа.
Итак, принципиальная схема импульсного блока питания №1:

Сразу скажу — резисторов на 0,5 Вт и 1 Вт у меня далеко не вся линейка номиналов, поэтому на плате блока питания предусмотрена установка либо одного резистора на 1 Вт, либо установка двух резисторов на 0,5 Вт:

Ферритовый сердечник покупался ЗДЕСЬ, в тот раз было заказано 3 типоразмера, поэтому на доставке мне 5 баксов скинули. Расчет количества витков производилось в программе Денисенко и первоначально долбанула жадность — расчет делался для выходного напряжения 15В при токе 4А.

В принципе 4 ампера с блока питания получить удалось, но грелся силовой транзистор довольно сильно, да и сам феррит нагревался. В общем данный блок питания был искусственно ограничен по мощности — R16 был установлен комби — 3 штуки по 2,2 Ома в параллель. Выходное напряжение было снижено до 12,6 вольта — посокольку это тестовый вариант и он оказался работоспособным я решил его использовать для питания светодиодов.
В принципе данный импульсник можно использовать, но силовой транзистор я поставил не совсем удачно — лично для меня проблем нет — алюминиевое ухо к радиатору я то приварить смогу, а вот остальные вряд ли.
На фото ниже показан максимальный ток до ограничения. Увеличивая нагрузку дальше напряжение уже начинает проваливаться. При коротком замыкании блок питания пытается стартовать, а поскольку обмотка самозапита не выдает нужного напряжения контроллер затыкает по минимальному напряжению и происходит циклический перезапуск.

На диоды тоже пришлось прикрутить радиатор, благо место под винты оказалось.
В общем поигравшись с данным блоком питания я решил его переработать — использовать диод для вторичного питания в корпусе ТО-220, набор диодов моста первичного питания заменить сборкой и развернуть силовой транзистор
В качестве радиаторов выступал листовой алюминий толщиной 2 мм на всю длину платы. Но этого оказалось маловато, поэтому дополнил его радиатором — крышкой и установил вентилятор:

Внешний вид нового варианта блока питания

Наверняка сразу бросится в глаза установка диода вторичного питания по минусовой шине. Для схемы это не принципиально, а вот на плате подобное решение позволило избавиться от не нужных перемычек.
Данный блок питания эксплуатируется уже более трех месяцев. Врать не буду — включается не ежедневно, но если включается, то работает по 6-12 часов подряд. Проблем пока не выявлено:

Самодельный светильник на светодиодах. В качестве радиатора для светодиодов выступает алюминиевая полка

Ну а теперь несколько слов на тему, почему задействовался усилитель ошибки и что из этого вышло.
На подавляющем большинстве схем блоков питания с использованием этого ШИМ контроллера обратная связь организовывается путем подключения транзистора оптрона на 1-й вывод контроллера, а второй вывод соединяется с минусом первичного питания. Таким образом отключается усилитель ошибки и регулировка выходного напряжения осуществляет TL431. Если же использовать усилитель ошибки возникает режим перерегулирования — условный коф усиления TL431 суммируется с коф усиления усилителя контроллера и реакция на малейшее изменение выходного напряжения слишком большая — попытка удержать на выходе заданное напряжение переходит в релейный режим, при котром вторичное напряжение формируется пачками импульсов. В результате выходное напряжение плавает с амплитудой до 1-го вольта.
Именно по этой причине коф усиления усилителя ошибки снижался до тех пор, пока не было получено устойчивое изенение длительности импульсов от минимальной нагрузки в 0,2 А до состояния ограничения тока. В результате коф усиления составил на разных экземплярах микросхемы от 5 до 10, т.е. номиналы резисторов R5 и R7 отличались в 5-10 раз.
Заморочится с усилителем ошибки заставило две вещи:
1. Двигатель с таходатчиком.
2. Два элемента Пельтье, валающиеся уже два года без дела.
Добавив в схему совсем не большое количество элементов удалось получить прототип СТАБИЛИЗАТОРА оборотов вот такой игрушки:

Двигатель на 12 вольт с тахометром

Двигатель на 12 вольт, усилие на валу развивает до 70 кг, имеет таходатчик (11 импульсов за оборот). Покупалось осенью 18 года, у этого продавца товар не доступен, поэтому РЕЗУЛЬТАТЫ ПОИСКА. Идея заключается в том, чтобы используя только блок питания организовать регулировку и стабилизацию оборотов данного двигателя. В принципе эксперимент прошел удачно, но требуется дополнительный источник питания для контроллера — на минимальных оборотах контроллер соскальзывает на релейный режим работы + самоблокировка по минимальному напряжению питания самого контроллера. Короче говоря самозапит организовать не удалось. В остальном же все отлично отработало.
Однако реализовать идею в ее первозданном виде не получилось и в итоге данный двигатель обрел вот такую ПЛАТУ УПРАВЛЕНИЯ.
Элементы Пельтье задуманы как охладители питьевой воды. В обычном режиме производится стабилизация выходного напряжения в 12 вольт. Как только вода охлаждается до установленной температуры сигнал с терморезистора уменьшает выходное напряжение. Причем за счет плавного уменьшения выходного напряжения и потерь "холода" происходит доохлаждение куллера постоянно и данный источник способен работать даже с самозапитом.
В крайнем случае можно придать иллюзию современного дизайна установив релейный терморегулятор W1209. Но это уже по Вашему усмотрению, мне достаточно крутилки со стрелками БОЛЬШЕ-МЕНЬШЕ.
Поскольку вторичные цели были достигнуты, было решено вернуться к традиционному исполнению и отказаться от использования усилителя ошибки, доверив контроль выходного напряжения только TL431. Так и появился третий вариант схемы импульсного блока питания на UC3843:

Читайте так же:
Пайка дюралюминия в домашних условиях

Мощность данного блока питания сравнительно не велика, поскольку его основная задача питать подстветку с током потребления 0,45 А и плату управления с потреблением меньше 0,7 ампера. Так тест на нагрузку он отрабоал легко. Однако смущал нагрев феррита. Собственно этот нагрев и заставил снизить частоту преобразования и установить на феррит радиатор.

Третий вариант блока питания

Кстати, FR207 у меня на нашлось, поэтому снизить скорость диода клампера я решил использованием ферритовых бусин.
Ну и последний вариант — блок питания для реле, электроклапанов и электромагнитов. В этом преобразователе разделено выходное напряжение на 10 и 15 вольт. 15 вольт используется для включения, а 10 вольт для удержания.
На всякий случай напоминаю, что для сработки электромагнита требуется больше энергии, чем для его удержания в сработанном состоянии. Использование одного, номинального напряжения гарантирует довольно большой ресурс, но вызывает лишнее потребление и провоцируте хоть и не большой, но все же нагрев катушки соленоида. Используя два напряжения чуток усложняется управление, но снижается общее потрбелние, снижает нагрев катушек + получаем возможность уменьшения времени пролета контактов реле в момент переключения.

Казалось бы на этом можно было закончить изыскания в области контроллера UC3843, но мне на давал покоя принцип работы DK124 — ПОДРОБНО ЗДЕСЬ. Этот контроллер кроме ШИМ регулировки имеет несколько ступеней регулировки частоты и не попробовать этот же принцип я не мог.
В качестве оптрона СВЕТОДИОД-ФОТОТРАНЗИСТОР использовался самодельный оптрон методика изготовления которого показана здесь:

Регулировку частоты в зависимости от выходных параметров удалось получить не сразу — слишком разные токи свечения светодиода оптрона PC817 и используемого белого светодиода. Пришлось вводить подстроечный резистор регулирующий ток через каждый светодиод.
В итоге удалось получить полноценную регулировку и ШИМ и частотой.
Во время тестов выяснилась еще одна неприятность — используемый в блоке питания супрессор нагревается до температуры выше 100 градусов и естественно, что может стать причиной выхода из строя данного блока питания. Размышлял я не долго — принцип работы супрессора и клампера радикально отличается, но они выполняют одну и ту же задачу — подавляют выбросы обратного напряжения на силовом транзисторе. Поэтому параллельно супрессору я поставил клампер согласно расчетам программы Денисенко.
Таким образом выделяемое тепло я разделил на два элемента не влияющие друг на друга и хотя суупрессор все равно имеет температуру чуть выше, чем мне хотелось, но не выходит за пределы безопсаного режима работы.
Теперь осталось выяснить что собственно дает регулировка выходного напряжения частотой.
Спустя пару часов выяснилось, что она не дает практически ни чего — температура и силового транзистора и супрессора одинаковая и на частоте преобразования 53 кГц и на частоте 105 кГц.
В принципе я тешил слабую надежду на то, что радиакльно что то может измениться — во всех блоках питания в которых использовался принцип стабилизации изменением частоты использовался либо резонанс, либо дроссель рассеивания. Ни того, ни другого в данном блоке питания не было.
В общем разрезав дорожку я установил последовательно первичной обмотке дроссель на 4 мкГн, выпаянный из какого то БП.
В итоге температура супрессора осталось прежней, а вот температура силового транзистора снизилась на 10ºС (!) .
Замеры проводились при входном напряжении 230 вольт, при выходном напряжении 10 вольт протекающий через нагрузку ток составлял 1,5 ампера, что является СРЕДНИМ потреблением для данного источника питания.
В итоге получилась следующая схема источника питания:

На схеме уже подредактированы моточные данные, феррит использовался КИТАЙСКИЙ, зазор 0,3 мм (суммарно получается 0,6 мм).
Регулировка данного инвертора осуществляется следующим образом:
Проделываются все операции описанные в следующем параграфе, при этом движок резистора R1 должен находиться в правом по схеме положении примерно на сопротивлении 400. 500 Ом.
После проверки всех режимов работы блок питания нагружается на величину СРЕДНЕЙ нагрузки и перемещением движка R1 добиваются увеличения частоты преобразования в 2 раза.
Контролируем изменние частоты в зависимости от нагрузки. При МАКСИМАЛЬНОЙ нагрузке частота должна опуститься до расчетной величины — до той, на которую расчитывали трансформатор.

Первое включение свежесобранного блока питания лучше сделать от отдельного источника питания напряжением 12-15вольт. Напряжение подается непосредственно на контроллер и проверяется его работоспособность и частота управляющих импульсов.
Если все нормально, то перемычкой это же напряжение подается и на плюсосвой вывод сетевого конденсатора — проверяется напряжение на первичной обмотке, проверяется вторичное напряжение. Да, да — блок питания будет пытаться вытянуть вторичное напряжение, ведь длительность управляющих импульснов с UC3843 будет достигать максимального значения.
Дальше уже как обычно — вместо сетевого предохранителя лампа накаливания и пробуем включить в сеть. Кстати, на выход БП необходимо повесить хоть какую ни будь нагрузку. Резистора на 150-220 Ом вполне подойдет.
Более подробно пуско-наладочные работы показанны в видео:

Читайте так же:
Тмнс 12 технические характеристики

Тесты данных блоков питания показаны в этом видео:

Архив с принципиальными схемами блоков питания в формате СПЛАН и чертежами печатных плат в формате СПРИНТ лежат в АРХИВЕ.
Некоторые рекомендации по выбору компонентов приведены ЗДЕСЬ.
Программа для расчетов импульсных блоков питания ЗДЕСЬ.

Что такое импульсный блок питания и чем он отличается от обычного аналогового

Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

Для этого создаются дополнительные элементы: блоки питания, преобразующие напряжение одного вида в другой. Они могут быть:

встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;

или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

2. импульсных блоках питания.

Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

Трансформаторные блоки питания

Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

Схема трансформаторного блока питания

За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

Импульсные блоки питания (ИБП)

Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

доступностью комплектования распространенной элементной базой;

надежностью в исполнении;

возможностями расширения рабочего диапазона выходных напряжений.

Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

Схема импульсного блока питания

В состав основных деталей источников питания входят:

сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;

накопительная фильтрующая емкость;

ключевой силовой транзистор;

схема обратной связи, выполненная на транзисторах;

импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;

выпрямительные диоды выходной схемы;

цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;

силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;

Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

Плата импульсного блока питания

Как работает импульсный блок питания

Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

Входной диодный мост выпрямляет проходящие через него синусоиды, которые затем преобразуются транзисторной схемой в импульсы высокой частоты и прямоугольной формы с определенной скважностью. Они могут преобразовываться:

1. с гальваническим отделением сети питания от выходных цепей;

2. без выполнения подобной развязки.

Импульсный блок питания с гальванической развязкой

В этом случае высокочастотные сигналы направляются на импульсный трансформатор, осуществляющий гальваническую развязку цепей. За счет повышенной частоты увеличивается эффективность использования трансформатора, снижаются габариты его магнитопровода и вес. Чаще всего для материала подобного сердечника применяют ферромагнетики, а электротехнические стали в этих устройствах практически не используются. Это также позволяет минимизировать общую конструкцию.

Один из вариантов исполнения схемы импульсного блока питания с трансформаторной развязкой цепей показан на картинке.

Схема импульсного блока питания

В таких устройствах работают три взаимосвязанных цепочки:

2. каскад из силовых ключей;

3. импульсный трансформатор.

Как работает ШИМ-контроллер

Контроллером называют устройство, которое управляет каким-либо технологическим процессом. В рассматриваемых нами блоке питания им выступает процесс преобразования широтно-импульсной модуляции. В его основу заложен принцип выработки импульсов одинаковой частоты, но с разной длительностью включения.

Подача импульса соответствует обозначению логической единицы, а отсутствие — нуля. При этом они все равны по величине амплитуды и частоте (имеют одинаковый период колебаний Т). Продолжительность включенного состояния единицы и его отношение к периоду меняются и позволяют управлять работой электронных схем.

Типовые изменения ШИП-последовательностей показаны на графике.

Принципы создания ШИМ-импульсов

Контроллеры обычно создают подобные импульсы с частотой 30÷60 кГц.

В качестве примера можно привести контроллер, выполненный на микросхеме TL494. Для настройки частоты выработки его импульсов используется схема, состоящая из резисторов с конденсаторами.

ШИМ-контроллер

Работа каскада из силовых ключей

Он состоит из мощных транзисторов, которые подбираются из биполярных, полевых или IGBT-моделей. Для них может быть создана индивидуальная система управления на других маломощных транзисторах либо интегральных драйверах.

Силовые ключи могут быть включены по различным схемам:

со средней точкой.

Импульсный трансформатор

Первичная и вторичная обмотки, смонтированные вокруг г магнитопровода из феррита или альсифера, способны надежно передавать высокочастотные импульсы с частотой вплоть до 100 кГц.

Их работу дополняют цепочки из фильтров, стабилизаторов, диодов и других компонентов.

Импульсные блоки питания без гальванической развязки

В импульсных блоках питания, разработанных по алгоритмам, исключающим гальваническое разделение, высокочастотный разделительный трансформатор не используется, а сигнал поступает сразу на фильтр нижних частот. Подобный принцип работы схемы показан ниже.

Схема блока питания без трансформаторной развязки

Особенности стабилизации выходного напряжения

Все импульсные блоки питания имеют в своем составе элементы, осуществляющие отрицательную обратную связь с выходными параметрами. За счет этого они обладают хорошей стабилизацией выходного напряжения при изменяющихся нагрузках и колебаниях питающей сети.

Способы реализации обратной связи зависят от применяемой схемы для работы блока питания. Она может осуществляться у блоков, работающих с гальванической развязкой за счет:

1. промежуточного воздействия выходного напряжения на одну из обмоток высокочастотного импульсного трансформатора;

2. применения оптрона.

В обоих случаях эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера.

При использовании схемы без гальванической развязки обратная связь обычно создается за счет подключения резистивного делителя напряжения.

Преимущества импульсных блоков питания над обычными аналоговыми

При сравнении конструкций блоков с равными показателями выходных мощностей импульсные блоки питания обладают следующими достоинствами:

1. уменьшенный вес;

2. повышенный КПД;

3. меньшая стоимость;

4. расширенный диапазон питающих напряжений;

5. наличие встроенных защит.

1. Пониженный вес и габариты импульсных блоков питания объясняются переходом от преобразований низкочастотной энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на больших радиаторах охлаждения и работающими в постоянном линейном режиме, к технологиям импульсного преобразования и регулирования.

За счет повышения частоты обрабатываемого сигнала сокращается емкость конденсаторов у фильтров напряжения и, соответственно, их габариты. Также упрощается их схема выпрямления вплоть до перехода к самой простой — однополупериодной.

2. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований.

В импульсных блоках наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.

3. Цена на импульсные блоки питания постепенно снижается за счет постоянно проводимой унификации элементной базы, которая производится широким ассортиментом на полностью механизированных предприятиях со станками-роботами. К тому же режим работы силовых элементов на основе управляемых ключей позволяет использовать менее мощные полупроводниковые детали.

4. Импульсные технологии позволяют запитывать блоки питания от источников напряжения с разной частотой и амплитудой. Это расширяет область их применения в условиях эксплуатации с различными стандартами электрической энергии.

5. Благодаря использованию малогабаритных полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается надежно встраивать защиты, контролирующие возникновение токов коротких замыканий, отключения нагрузок на выходе прибора и другие аварийные режимы.

У обычных трансформаторных блоков питания такие защиты создавались на старой электромеханической, релейной, полупроводниковой базе. Применять сейчас для них цифровые технологии в большинстве схем не имеет смысла. Исключение составляют случаи питания:

маломощных цепей управления сложной бытовой техники;

слаботочных устройств управления высокой точности, например, используемых в измерительной технике или метрологических целях (цифровые счетчики электроэнергии, вольтметры).

Недостатки импульсных блоков питания

В/ч помехи

Поскольку импульсные блоки питания работают по принципу преобразования высокочастотных импульсов, то они в любом исполнении вырабатывают помехи, транслируемые в окружающую среду. Это создает необходимость их подавления различными способами.

В отдельных случаях помехоподавление может быть неэффективным, что исключает использование импульсных блоков питания для отдельных типов точной цифровой аппаратуры.

Ограничения по мощности

Импульсные блоки питания имеют противопоказание к работе не только на повышенных, но и пониженных нагрузках. Если в выходной цепи произойдет резкое снижение тока за предел минимального критического значения, то схема запуска может отказать или блок станет выдавать напряжение с искаженными техническими характеристиками, не укладывающимися в рабочий диапазон.

Блок питания на UC 3842 схеме

ШИМ-контроллеры – достаточно популярный элемент в схемах импульсных блоков питания. Они способствуют повышению КПД конечного устройства, выступают в роли задающего генератора.

Микросхема UC 3842 реализует ШИМ-контроллер с обратной связью, построенный на базе полевых транзисторов.

Структурная схема (может пригодиться для глубокого понимания принципа работы) выглядит следующим образом.

Рис. 1. Структурная схема

Может поставляться в 16-ти или 8-пиновых корпусах. Распиновка для первого типа будет выглядеть так.

Рис. 2. Распиновка для первого типа

Производителем предполагается несколько вариантов использования данной ИМС, например, в качестве:

  • Генератора импульсов;
  • Усилителя сигнала ошибки;
  • Элемента организации обратной связи по току;
  • Выключателя по уровню напряжения;
  • И т.д.

Но самое популярное – построение преобразователей тока и блоков питания.

Простейшая схема, рекомендуемая производителем (можно найти в даташите), выглядит так.

Рис. 3. Простейшая схема, рекомендуемая производителем

Как и всегда с импульсными БП, здесь придётся повозиться с намоткой трансформатора.

Для расчёта его параметров необходимо использовать специальный софт (для непрофессионалов так будет проще и быстрее). Например – Flyback 8.1 и т.п.

В промышленных БП, собранных на той же микросхеме, часто используется типовая схема. Она ниже.

Рис. 4. Типовая схема

Ещё одна проверенная схема.

Рис. 5. Ти повая схема

Реальные БП, собранные по ней, могут длительно отдавать мощность до 60 Вт (20 В, 3 А). При перекомпоновке трансформатора можно добиться и более высокого показателя.

Трансформатор можно намотать на сердечнике, взятом из компьютерного БП, например, из сломанного. Но можно рассчитать и намотать с нуля.

Еще одна схема, но на базе аналогичной микросхемы (из той же серии) – UC3844.

Рис. 6. Схема на базе микросхемы UC3844

Работает она на частоте 100 кГц, обеспечивает выходное напряжение 12 В и силу тока 2 А (24 Вт в итоге). Допускаются колебания входного напряжения с отклонением до 20% от номинала (будет работать даже от напряжения в 175 В).

Номиналы и подробную инструкцию по намотке трансформатора можно найти в этом файле.

UC3844 можно легко заменить на UC3842, но перед этим нужно согласовать рабочую частоту. Это делается за счёт конденсатора в колебательном контуре.

Мнения читателей
  • zx007 / 15.06.2021 — 23:23

Почему после диодного моста стоит конденсатор на 250 вольт, когда везде ставится на 400 вольт?

В этих схемах НЕТ колебательных контуров! Напротив, с любыми колебаниями ведут непримириую борьбу.

Номиналы и подробную инструкцию по намотке трансформатора можно найти в этом файле. Эта сноска битая.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Импульсные блоки питания — устройство и ремонт

Сервисный центр Комплэйс выполняет ремонт импульсных блоков питания в самых разных устройствах.

Схема импульсного блока питания

Импульсные блоки питания используются в 90% электронных устройств. Но для ремонта импульсных блоков питания нужно знать основные принципы схемотехники. Поэтому приведем схему типичного импульсного блока питания.

Принципиальная схема импульсного блока питания

Работа импульсного блока питания

Первичная цепь импульсного блока питания

Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.

На входе блока расположен предохранитель.

Затем стоит фильтр CLC. Катушка, кстати, используется для подавления синфазных помех. Вслед за фильтром располагается выпрямитель на основе диодного моста и электролитического конденсатора. Для защиты от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливают варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.

Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если выйдет из строя диодный мост. Диод не даст пройти отрицательному напряжению в основную схему. Потому, что откроется и сгорит предохранитель.

За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения. А также для первоначальной зарядки конденсатора C1.

Активные элементы первичной цепи следующие. Коммутационный транзистор Q1 и с ШИМ (широтно импульсный модулятор) контроллер. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное. Оно преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.

И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.

Работа вторичной цепи импульсного блока питания

Во выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр. Он состоит из электролитических конденсаторов и дросселя.

Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Если выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод. Он включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается. Пока напряжение не снизится до порогового.

Ремонт импульсных блоков питания

Неисправности импульсных блоков питания, ремонт

Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:

  1. Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
  2. Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
  3. Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду. Но не всегда. Иногда внешне исправный конденсатор оказывается плохим. Например, по внутреннему сопротивлению.
  4. Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
  5. Если не работает ШИМ регулятор, то меняем его.
  6. Замыкание, а также обрыв обмоток трансформатора. Шансы на починку минимальны.
  7. Неисправность оптопары — крайне редкий случай.
  8. Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
  9. Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.

Примеры ремонта импульсных блоков питания

Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.

ремонт импульсного блока питания в блоке защиты и управления

Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.

Например, в одном блоке питания оказались неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.

На втором не работал ШИМ контроллер.

На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление у них большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке оказалось в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. Работоспособность блока питания восстановилась только после замены этого конденсатора. Потому что ШИМ заработал.

Ремонт компьютерных блоков питания

Пример ремонта блока питания компьютера. В ремонт поступил дорогой блок питания на 800 Вт. При его включении выбивало защитный автомат.

ремонт компьютерного блока питания

Выяснилось, что короткое замыкание вызывал сгоревший транзистор в первичной цепи питания. Цена ремонта составила 3000 руб.

Имеет смысл чинить только качественные дорогие компьютерные блоки питания. Потому что ремонт БП может оказаться дороже нового.

Цены на ремонт импульсных БП

Цены на ремонт импульсных блоков питания очень отличаются. Дело в том, что существует очень много электрических схем импульсных блоков питания. Особенно много отличий в схемах с PFC (Power Factor Correction, коэффициент коррекции мощности). ЗАС повышает КПД.

Но самое важное — есть ли схема на сгоревший блок питания. Если такая электрическая схема есть в доступе, то ремонт блока питания существенно упрощается.

Стоимость ремонта колеблется от 1000 рублей для простых блоков питания. Но достигает 10000 рублей для сложных дорогих БП. Цена определяется сложностью блока питания. А также сколько элементов в нем сгорело. Если все новые БП одинаковые, то все неисправности разные.

Например, в одном сложном блоке питания вылетело 10 элементов и 3 дорожки. Тем не менее его удалось восстановить, причем цена ремонта составила 8000 рублей. Кстати, сам прибор стоит порядка 1 000 000 рублей. Таких блоков питания в России не продают.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector