Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ПРИНЦИП РАБОТЫ ДИОДА

ПРИНЦИП РАБОТЫ ДИОДА

Все мы прекрасно знаем что такое полупроводниковый диод, но мало кто из нас знает о принципе работы диода, сегодня специально для новичков я поясню принцип его работы. Диод как известно одной стороной хорошо пропускает ток, а в обратном направлении — очень плохо. У диода есть два вывода — анод и катод. Ни один электронный прибор не обходится без применения диодов. Диод используют для выпрямлении переменного тока, при помощи диодного моста который состоит из четырех диодов, можно превратить переменной ток в постоянный, или с использованием шести диодов превратить трехфазовое напряжение в однофазовое, диоды применяются в разнообразных блоках питания, в аудио — видео устройствах, практически повсюду. Тут можно посмотреть фотографии некоторых видов диодов.

фотографии некоторых видов диодов

На выходе диода можно заметить спад начального уровня напряжения на 0,5-0,7 вольт. Для более низковольтных устройств по питанию используют диод шоттки, на таком диоде наблюдается наименьший спад напряжения — около 0,1В. В основном диоды шоттки используют в радио передающих и приемных устройствах и в других устройствах работающих в основном на высокой частоте. Принцип работы диода с первого взгляда достаточно простой: диод — полупроводниковый прибор с односторонней проводимостью электрического тока.

ЦОКОЛЁВКА ДИОДА

Вывод диода подключенный к положительному полюсу источника питания называют анодом, к отрицательному — катодом. Кристалл диода в основном делают из германия или кремния одна область которого обладает электропроводимостью п — типа, то есть дырочная, которая содержит искуственно созданный недостаток электронов, друггая — проводимости н — типа, то есть содержит избыток электронов, границу между ними называют п — н переходом, п — в латыни первая буква слова позитив, н — первая буква в слове негатив. Если к аноду диода подать положительное напряжение, а к катоду отрицательное — то диод будет пропускать ток, это называют прямым включением, в таком положении диод открыт, если подать обратное — диод ток пропускать не будет, в таком положении диод закрыт, это называют обратным подключением.

РАБОТА ДИОДА

Обратное сопротивление диода очень большое и в схемах его принимают ка диэлектрик (изолятор). Продемонстрировать работу полупроводникового диода можно собрать простую схему которая состоит из источника питания, нагрузки (например лампа накаливания или маломощный электрический двигатель) и самого полупроводного диода. Последовательно подключаем все компоненты схемы, на анод диода подаем плюс от источника питания, последовательно диоду, то есть к катоду диода подключаем один конец лампочки, другой конец той же лампы подключаем к минусу источника питания. Мы наблюдаем за свечением лампы, теперь перевернем диод, лампа уже не будет светится поскольку диод подключен обратно, переход закрыт. Надеюсь каким то образом это вам поможет в дальнейшем, новички — А. Касьян (АКА).

Форум по обсуждению материала ПРИНЦИП РАБОТЫ ДИОДА

Волновое управление, двухфазное и способ регулирования тока в обмотках шаговых двигателей.

Схема гитарного комбо-усилителя с блоком эффектов на базе микросхем TDA2052, PT2399 и TL072.

Схема регулируемого таймера цикличного включения-отключения любой нагрузки через реле.

Сборник из 10 конструкций и схем приставок к цифровым мультиметрам, расширяющих функционал измерительных приборов.

Как работает светодиод и как устроен

В данной информационной статье мы постараемся в полной мере описать принцип работы светодиодов всех разновидностей, имеющихся в природе на сегодняшний день. Рассмотрим общее устройство LED и разберемся как получаются светоизлучающие диоды разных цветов.

Принцип работы

Наверное, каждый человек знает, что принцип действия светодиода заключается в его «свечении» при подключении к источнику питания. Однако за счет чего это достигается? Давайте разберемся более детально в этом вопросе.

Для создания видимого светового потока конструкция светодиода предусматривает наличие двух полупроводников, один из которых в своем составе должен содержать свободные электроны, а другой – «дыры».

принцип работы светодиода

Таким образом, между полупроводниками возникает «P-N» переход, в результате которого электроны от донора переходят в другой полупроводник (реципиент) и занимают свободные дыры с выделением фотонов. Эта реакция проходит только при наличии источника постоянного тока.

Принцип действия разобрали, однако благодаря чему происходит этот процесс? Для этого необходимо рассмотреть конструктивную особенность светодиода.

Как устроен светодиод

В независимости от модели светодиода (СОВ, OLED, SMD и т.д.) они состоят из следующих элементов:

  1. Анод (подача положительной полуволны на кристалл);
  2. Катод (подача отрицательной полуволны постоянного тока на кристалл полупроводника);
  3. Отражатель (отражение светового потока на рассеиватель);
  4. Чип или кристалл полупроводника (излучение светового потока за счет «P-N» перехода); (увеличение угла свечения светодиода).

устройство светодиода

Теперь ознакомимся со способами получения различных цветов.

Получение светодиода определенного цвета

Ранее мы разобрали принцип работы светодиода и выяснили, что световой поток образуется при возникновении «P-N» перехода в полупроводнике с выделением фотонов видимых человеческому глазу. Однако каким же образом можно получить различное свечение светодиода? Для этого существует несколько вариантов. Рассмотрим каждый из них.

Покрытие люминофором

Данная технология позволяет получить практически любой цвет, однако зачастую используется для получения белых светодиодов. Для нее применяют специальный реагент – люминофор, которым покрывают красный или синий светодиод. После обработки синий светоизлучающий диод начинает светить белым.

светодиоды покрытый люминофором

RGB — технология

Подобный тип устройств способен излучать любой оттенок светового спектра за счет применения в одном кристалле 3-х светодиодов: красного, зеленого и синего. В зависимости от интенсивности свечения каждого из них, меняется излучаемый свет.

rgb светодиод

Применение различных примесей и различных полупроводников

Благодаря данной технологии, изменяется длина волны излучаемого светового потока в зоне «P-N» перехода. А как известно, в зависимости от длинны волны, ее цвет меняется. Более наглядно это можно увидеть на следующем фото:

длина волны и цвет светодиода

Теперь давайте разберем следующий вопрос: какими электрическими характеристиками обладают данные устройства и что нужно для их надежной работы.

Электрические характеристики

Светодиоды – это устройства, излучающие световой поток при прохождении через них стабилизированного постоянного напряжения низкого номинала (3-5В). За счет создания разности потенциалов на аноде и катоде в кристалле возникает электрический ток, создающий световой поток.

электрические характеристики светодиода

Для полноценной работы LED, величина тока должна быть на уровне 20-25 мА. Однако для мощных светодиодов, ток потребления может достигать 1400 мА.

При увеличении напряжения источника питания, сила тока увеличивается по экспоненте. Это означает что при незначительном скачке напряжения питания сила тока увеличивается многократно, что может привести к повышению температуры и выходу из строя светоизлучающего диода(читайте, как проверить светодиод). Именно по этой причине источник постоянного напряжения необходимо стабилизировать с помощью специальных микросхем.

Теперь рассмотрим основные разновидности LED, их достоинства и недостатки.

Читайте так же:
Устройство для зарядки акб

Устройство светодиода индикаторного типа (DIP)

Данный тип LED – это «первопроходцы» в сфере светодиодной техники. Они предназначаются для промышленности в качестве индикаторов.

Они состоят из 3-х или 5-и миллиметрового корпуса, анода, катода, кристалла, золотого (в бюджетных вариантах медного) проводника, соединяющего анод с кристаллом и рассеивателя.

устройство светодиода dip

На практике применяются очень редко, т.к. имеют ряд недостатков:

  • большой размер;
  • малый угол свечения (до 120 0 );
  • низкое качество кристалла (при длительной работе яркость излучения падает до 70%);
  • слабый световой поток за счет малой пропускной способности кристалла (до 20мА).

Как устроен мощный светодиод

Мощные светоизлучающие диоды (например, фирмы cree) предназначены для создания интенсивного светового потока за счет прохождения через кристалл большого тока (до 1400 мА).

На кристалле выделяется большое количество тепла, которое с помощью алюминиевого радиатора отводится от кристалла полупроводника. Также этот радиатор служит в качестве отражателя для увеличения светового потока.

мощный светодиод cree

Для надежной работы мощных LED необходимо наличие в схеме специального драйвера рассчитанного на прохождение большого потока электронов, который помимо стабилизации напряжения должен ограничивать ток, соответствующий номинальной работе устройства.

Устройство филаментного светодиода

Светодиоды типа filament были изобретены еще в начале 2008 года. Однако пик их популярности приходится на 2014-2016 года. Они стали популярными у дизайнеров, поскольку напоминали обычные лампы накаливания и потребляли минимальное количество электроэнергии. Рекомендуем почитать интересную статью про филаментные светодиодные лампы.

Конструкция

Филаментные LED – это устройства, состоящие из сапфирового или обычного стекла диаметр, которого не превышает 1,5мм и специально выращенных кристаллов полупроводников (28 штук) соединённых последовательно на изолированной подложке.

Эти светодиоды помещаются в специальную колбу, покрываемую люминофором, за счет чего можно получить любой цвет. Основное достоинство LED устройств, разработанных по данной технологии – это угол свечения, достигающий 360 0 .

Устройство филаментной светодиодной лампы

Филаментные светоизлучающие диоды некоторые источники относят к классу COB (смотрите раздел ниже), поскольку кристаллы выращиваются на стекле или сапфире по аналогичной технологии.

Устройство и принцип работы светодиода COB

Технология СОВ или же Chip-On-Board – это одна из современных разработок в сфере электроники, заключающаяся в помещении большого количества кристаллов полупроводника с помощью диэлектрического клея на алюминиевую подложку. Также изготовление светодиодов подобного типа возможно на стеклянной матрице (COG) однако принцип работы у них одинаков.

Полученная матрица покрывается люминофором. В результате удается достичь равномерного свечение COB светодиода любого оттенка по всей площади. Данные устройства широко применяются в разработке телевизоров, ноутбуков и планшетов.

устройство светодиода cob

Принцип работы

Несмотря на то, что СОВ светодиоды имеют специфическое название, принцип его действия полностью аналогичен обычным индикаторным светоизлучающим диодам разработанных в 1962 году. При прохождении тока через кристаллы полупроводника возникает «P-N» переход и как следствие – световой поток.

Отличительной особенностью данного типа устройств является наличие большого количество кристаллов, что позволяет получить более интенсивный световой поток.

Устройство и принцип работы органического светодиода OLED

Самое новое достижение в сфере производства – это технология OLED. Она позволяет производить высокотехнологические телевизоры с тонким дисплеем, миниатюрные смартфоны, планшеты и еще многие другие приборы, без которых не обойтись в современном обществе.

Устройство OLED

Светоизлучающий диод OLED состоит из:

  • анода, изготовленного из смеси оксида индия с оловом;
  • подложки из фольги, стекла или же пластика;
  • алюминиевого или кальциевого катода;
  • излучающей прослойки на основе полимера;
  • токопроводящего слоя из органических веществ.

структура светодиода oled

Как работает данная технология?

Принцип действия OLED аналогичен светодиодам СОВ, SMD и DIP и заключается в образовании «P-N» перехода в полупроводниках. Однако отличительной особенностью технологии ОЛЕД является применение специальных полимеров, из которых состоит светоизлучающая прослойка, за счет которой увеличивается срок службы светодиода, световой поток видимого спектра и угол свечения.

Достоинства
  • минимальные размеры;
  • низкое энергопотребление;
  • равномерное свечение по всей площади;
  • длительный срок эксплуатации;
  • увеличенный срок службы;
  • широкий угол свечения (до 270 0 );
  • низкая себестоимость.

Мы рассмотрели основные типы светоизлучающих диодов, которые применяются в современном мире, однако на ряду с ними, корейские ученые пошли дальше и разработали LED на основе волокон, которые по их обещаниям вытеснят все устаревшие типы устройств. Давайте рассмотрим, что они собой представляют.

oled

Устройство и принцип работы светодиода на основе волокон

Для производства светодиодов данной ниши применяют нити терефталата полиэтилена обработанные раствором PEDOT:PSS polystyrene sulfonate. После обработки нить будущего светодиода просушивают при температуре 130 0 С.

После, заготовку обрабатывают по технологии OLED специальным полимером poly-(p-phenylenevinylene) polymer и полученные волокна покрывают тонким слоем суспензии литий-алюминиевого фторида.

светодиодное оптоволокно

Выводы

Мы рассмотрели основные типы светодиодов, которых как Вы можете видеть существует огромное количество. Однако по принципу работы они все одинаковы.

Также можно сказать, что благодаря применению современных материалов и технологий производства можно добиться высоких технических показателей и более надежной и длительной работы светодиодов.

Для наглядности рекомендуем просмотреть видео, в котором Вы подробно ознакомитесь с конструкцией LED:

Электровакуумный диод

Электровакуумный диод — вакуумная двухэлектродная электронная лампа. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. При подаче на анод отрицательного относительно катода напряжения все эмитированные катодом электроны возвращаются на катод, при подаче на анод положительного напряжения часть эмитированных электронов устремляется к аноду, формируя его ток. Таким образом, диод выпрямляет приложенное к нему напряжение. Это свойство диода используется для выпрямления переменного тока и детектирования сигналов высокой частоты. Практический частотный диапазон традиционного вакуумного диода ограничен частотами до 500 МГц. Дисковые диоды, интегрированные в волноводы, способны детектировать частоты до 10 ГГц [1] .

Содержание

Устройство [ править | править код ]

Электровакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод прямого накала представляет собой прямую или W-образную нить, разогреваемую током накала. Катод косвенного накала — длинный цилиндр или короб, внутри которых уложена электрически изолированная спираль подогревателя. Как правило, катод вложен внутрь цилиндрического или коробчатого анода, который в силовых диодах может иметь рёбра или «крылышки» для отвода тепла. Выводы катода, анода и подогревателя (в лампах косвенного накала) соединены с внешними выводами (ножками лампы).

Принцип работы [ править | править код ]

При разогреве катода электроны начнут покидать его поверхность за счёт термоэлектронной эмиссии. По мере того как электроны покидают поверхность катода и накапливаются в его атмосфере, возникает область отрицательного заряда. При этом в такой же пропорции поверхность начинает заряжаться положительно. В итоге каждому следующему электрону для отрыва из атома потребуется больше энергии, а сами электроны будут удерживаться положительно заряженной поверхностью в некоторой ограниченной по объему области над катодом. В результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

Читайте так же:
Устройство для пристрелки оружия

Уже при нулевом напряжении анода относительно катода (например, при коротком замыкании анода на катод) в лампе течёт ток электронов из катода в анод: относительно быстрые электроны преодолевают потенциальную яму пространственного заряда и притягиваются к аноду. Отсечка тока наступает только тогда, когда на анод подано запирающее отрицательное напряжение порядка −1 В и ниже. При подаче на анод положительного напряжения в диоде возникает ускоряющее поле, ток анода возрастает. При достижении током анода значений, близких к пределу эмиссии катода, рост тока замедляется, а затем стабилизируется (насыщается).

Вольт-амперная характеристика [ править | править код ]

Вольт-амперная характеристика (ВАХ) электровакуумного диода имеет 3 характерных участка:

1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при U a = 0 очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.

2. Участок закона степени трёх вторых. Зависимость анодного тока от напряжения описывается законом степени трёх вторых:

где g — постоянная, зависящая от конфигурации и размеров электродов (первеанс). В простейшей модели первеанс не зависит от состава и температуры катода, в действительности растёт с ростом температуры из-за неравномерного нагрева катода.

3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается, так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана:

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Чрезмерное увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры [ править | править код ]

К основным параметрам электровакуумного диода относятся:

  • Крутизна ВАХ: S = d I a d U a >  — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление: R i = 1 S =<1 over S>>
  • Ток насыщения.
  • Запирающее напряжение — отрицательное напряжение на аноде относительно катода, необходимое для прекращения тока в диоде.
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении , происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возрастанием силы тока.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода.

Если температура катода постоянна, то в пределах участка «трех вторых» крутизна равна первой производной от функции «трех-вторых».

Маркировка приборов [ править | править код ]

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
  3. Следующее число — это порядковый номер разработки прибора.
  4. И последний символ — конструктивное выполнение прибора:
    • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
    • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
    • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10 мм.
    • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6 мм.
    • К — серия ламп в керамическом корпусе.

Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

Сравнение с полупроводниковыми диодами [ править | править код ]

По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

Диоды. For dummies

Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.

В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.

Два слова о зонной теории проводимости твердых тел

Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.

Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных энергетических уровнях. Заполнение этих уровней электронами происходит снизу вверх и на каждом из них может находиться не больше строго определенного числа электронов (атом Бора). Таким образом, если уровень заполнен, то новый электрон не может на него попасть, пока для него не освободится место. Чтобы электрон мог перейти на уровень выше, ему нужно сообщить дополнительную энергию. А если электрон «падает» вниз, то излишек энергии освобождается в виде излучения. Электроны могут занимать в атоме только сторого определенные орбиты с определенными энергиями. Орбиты эти называются разрешенными. Соответственно, запрещенными называют те орбиты (зоны), в которых электрон находиться не может. Подробнее об этом можно почитать по ссылке на атом Бора выше, здесь же примем это как аксиому.

Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.

Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.

p-n переход

Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.

Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.

В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.

Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.

Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.

Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.

Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.

Все, конец теории, пора перейти к ее практическому применению.

Диоды, наконец-то

image
Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.

Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.

Диоды имеют нелинейную вольт-амперную характеристику.

Области применения диодов

  1. Выпрямление пременного тока. Основано оно именно на свойстве диода «запираться» при обратном смещении. Диод как бы «срезает» отрицательные полуволны.
  2. В качестве переменной емкости. Эти диоды называются варикапами.
    image
    Здесь используется зависимость барьерной емкости перехода от обратного смещения. Чем больше его значение, тем шире обедненная область p-n перехода. Ее можно представить себе как плоский конденсатор, обкладками которого явялются границы области, а сама она выступает в качестве диэлектрика. Соответственно, чем толще «слой диэлеткрика», тем ниже барьерная емкость. Следовательно, изменяя приложенное напряжение можно электрически менять емкость варикапа.
  3. Для стабилизации напряжения. Принцип работы таких диодов заключается в том, что даже при значительном увеличении внешнего падения напряжения, падение напряжения на диоде увеличится незначительно. Это справедливо и для прямого, и для обратного смещений. Однако напряжение пробоя при обратном смещении намного выше, чем прямое напряжение диода. Таким образом, если нужно поддерживать стабильным большое напряжение, то диод лучше включать обратно. А чтобы он сохранял работоспособность, несмотря на пробой, нужно использовать диод особого типа — стабилитрон.
    image
    В прямосмещенном режиме он будет работать подобно обычному выпрямляющему диоду. А вот в обратносмещенном не будет проводить ток до тех пор, пока приложенное напряжение не достигнет так называемого напряжения стабилитрона, при котором диод сможет проводить значительный ток, а напряжение будет ограничено уровнем напряжения стабилитрона.
  4. В качестве «ключа» (коммутирующего устройства). Такие диоды должны уметь очень быстро открываться и закрываться в зависимости от приложенного напряжения.
  5. В качестве детекторов излучения (фотодиоды).
    image
    Кванты света передают атомам в n-области дополнительную энергию, что приводит к появлению большого числа новых пар электрон-дырка. Когда они доходят до p-n перехода, то дырки уходят в p-область, а электроны скапливаются у края перехода. Таким образом, происходит возрастание дрейфового тока, а между p- и n-областями возникает разность потенциалов, называемая фотоЭДС. Величина ее тем больше, чем больше световой поток.
  6. Для создания оптического излучения (светодиоды).
    image
    При рекомбинации дырок и электронов (прямое смещение) происходит переход последних на более низкий энергетический уровень. «Излишек» энергии выделяется в виде кванта энергии. И в зависимости от химического состава и свойств того или иного полупроводника, он излучает волны того или иного диапазона. От состава же зависит и эффективность излучения.

Немного экзотики

Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе туннельных диодов.
image
Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.

Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.
image
В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.

Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.

Заключение

Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.

Что такое диод и как он работает

В электротехнике используется много радиодеталей, и все они имеют свои особенности, но семейство диодов имеет свои удивительные свойства.

Манипулируя соотношениями примесей или конструктивными особенностями, получают новые возможности этого прибора, используемые совершенно для других целей. Зная, что такое диод, его устройство и принцип работы диода можно научиться использовать его для самых неожиданных решений.

Приглашаем познакомиться с этим многоцелевым и разнообразным радиоэлементом. А начнем с назначения диода.

Назначение диода

Область применения диодов все больше и больше расширяется. Это достигается благодаря тому, что работа над их преобразованием не утихает, а только увеличивается. Рассмотрим, где их можно встретить:

  • выпрямление;
  • детектирование;
  • защита;
  • стабилизация;
  • переключение;
  • излучение.

На заре своего образования диоды назывались выпрямителями . Они способны пропускать ток в одном направлении и задерживать его в противоположном. Благодаря чему переменный ток становился однонаправленным, пульсирующим. То есть напряжение носило волновой характер.

Причем выпрямление могло быть как на одном диоде, тогда на выходе была только положительная полуволна, так и на четырех, в этом случае на выходе оставались и положительная, и отрицательная полуволны.

Другой способ применения – детектирование . Радио и телевизионные сигналы передаются на несущих частотах. В передающих устройствах с помощью модулятора происходит наложение полезного сигнала на несущую частоту.

Чтобы извлечь полезную информацию, чаще всего применяют диод с конденсатором. В этом случае диод работает как однопериодный выпрямитель, а конденсатор фильтрует ненужные частоты.

назначение диода

Диод используется для защиты, например, в коммутируемой цепи с индукционной нагрузкой. Если катушку, по которой проходит ток отключить, то электроны под действием электромагнитного поля продолжат двигаться, создавая для ключа опасное высокое напряжение.

В качестве ключа может быть использован транзистор, который может выйти из строя. Чтобы снять накопленный заряд, параллельно катушке подключают диод, но включают его в обратном направлении относительно движения тока. При отключении выключателя диод возвращает ток на начало катушки, тем самым защищая ключ.

Несколько измененные диоды способны работать в обратном направлении, пропуская через себя ток, когда напряжение превышает допустимое значение. Такие приборы называются стабилитронами, и о них будет сказано ниже.

диод принцип работы для чайников

Для переключения частот часто требуются переменные конденсаторы. Варикап, еще одна разновидность диода, способен менять свою емкость под действием меняющегося обратного напряжения.

Наконец, светодиоды и фотодиоды. Светодиоды способны излучать потоки лучистой энергии, фотодиоды, напротив, преобразуют солнечный свет в электрический ток. Фотодиоды по своему назначению также разнообразны и имеют различное применение.

Из чего состоит диод

Лучше всего понять, что такое диод поможет его строение. Выделим три основные группы:

  • вакуумные;
  • газонаполненные;
  • полупроводниковые.

Как у любого другого радиоэлемента у диода есть выводы. Если перевести слово диод с древнегреческого, то получится два электрода. Они носят название:

  • анод ;
  • катод .

В обычном состоянии на анод подается положительное напряжение, на катод отрицательное. В этом случае диод открыт и через него протекает ток.

На оба вывода могут подаваться положительные потенциалы, но на аноде этот потенциал должен превышать катодный.

В вакуумных диодах применяются стеклянные или металлические баллоны, из которых выкачан воздух. Катод может быть:

  • прямого накала;
  • косвенного накала.

Катод прямого накала представляет собой спиральную нить, по которой проходит ток, разогревая его. При этом высвобождаются электроны, которые устремляются к аноду, если он имеет положительный потенциал относительно катода.

из чего состоит диод

Если на аноде напряжение ниже катодного, то электроны возвращаются назад. Таким образом, происходит выпрямление переменного тока. В лампах с косвенным подогревом катод представляет собой короб или цилиндр, внутри него находится нить накала, разогревающая его.

В отличие от вакуумных диодов в газонаполненных имеется ионизированный газ. Он становится проводником между анодом и катодом. Для включения диода используют сетки или поджигающий электрод.

Вакуумные и газонаполненные диоды способны пропускать большой ток и работать с повышенным напряжением. Однако они потребляют много энергии для своей работы, поэтому на смену им пришли полупроводники.

устройство диода

По проводимости электрического тока различают:

  • проводники;
  • полупроводники;
  • диэлектрики.

Полупроводники занимают промежуточное значение между проводниками и диэлектриками. В обычном состоянии они не проводят ток, но при определенных условиях у них появляется проводимость. Достигается это, например, добавлением примесей. Различают два вида проводимости:

  • с помощью электронов, n-тип;
  • с помощью дырок, p-тип.
Материал, основным носителем которого служат положительно заряженные атомы. Для этого добавляют акцепторные примеси, при этом получается материал с недостающим количеством электронов. Для n-типа добавляют донорные примеси, материал обладает избытком электронов.

Соединяя эти два типа получают прибор, способный пропускать ток только в одном направлении.

Как определить анод и катод диода

Диоды бывают разного размера, и маркировка может несколько отличаться. Например, на диодах советского образца на корпусе, который был достаточно большим, непосредственно наносился знак диода, указывающий направление движения.

Корпус, расположенный возле катода, может иметь большое расширение в виде кольца. На некоторых видах устанавливают знаки + и – или делают отметку в виде нарисованного кольца либо точки.

как определить анод и катод диода

В случае сомнения можно проверить диод с помощью мультиметра, поставив прибор в режим измерения сопротивления или проверки диода, если есть такой режим.

что такое диод

Если сопротивление маленькое, значит, щуп с положительным напряжением подключен к аноду, а минусовой к катоду. Большое сопротивление говорит, что щупы подключены в обратном порядке.

Принцип работы диода

Осталось посмотреть, как работает диод. Когда происходит соединение двух полупроводников разной проводимостью, между ними появляется пограничная полоса с нейтральным зарядом, поскольку часть электронов занимает часть дырок.

принцип работы диода

При прямом включении положительное напряжение подается на дырочную область, а отрицательное на электронную. В этом случае электроны под действием напряжения перескакивают нейтральную зону и, проходя через дырочную область, устремляются к положительному полюсу источника питания.

Если поменять напряжение, электроны уходят к положительному полюсу, увеличивая нейтральную зону. В этом случае диод закрывается.

Диод в цепи постоянного тока

В схеме с постоянным током диод работает как ключ: открывается, когда прямое напряжение превышает пороговое значение и закрывается, когда это напряжение становится меньше.

Выше было рассмотрена работа диода с катушкой индуктивности. Когда по катушке идет ток, то параллельно подключенный диод находится в закрытом состоянии, так как на аноде и катоде напряжение почти равно.

Когда цепь размыкается, по катушке продолжает идти ток и накапливается. Напряжение на аноде повышается, диод открывается и пропускает лишний заряд через себя. После падения напряжения он закрывается.

Обозначение диода на схемах

Для пояснения работы радиоэлектронного устройства используют электрические принципиальные схемы. Найти диод на схеме не составит труда, потому что обозначение диода осуществляется с помощью треугольника с вертикальным отрезком на его вершине.

обозначение диода на схемах

Рядом ставится порядковый номер и буквы VD.

Диод в цепи переменного тока

Если диод работает как выпрямитель переменного тока, тогда во время повышения напряжения положительной полуволны диод открывается, а когда напряжение падает ниже порогового значения, он закрывается. Во время отрицательной полуволны включается в работу параллельно подключенный диод, но обращенный в обратном направлении.

Два других подключены таким же образом к нулевому проводу. При каждой полуволне участвуют в работе два диода, один связан с фазным проводом, другой с нулевым. Снимаемое с них положительное и отрицательное напряжение подается в постоянную цепь.

Характеристики диода

Полупроводники очень чувствительны к перегреву, поэтому режим их работы строго оговаривается. Учитываются следующие параметры:
рабочее, максимальное и импульсное обратное напряжение;

  1. прямое напряжение;
  2. обратный ток;
  3. прямой постоянный, импульсный и ток перегрузки;
  4. рабочая и максимальная частота;
  5. максимальная температура корпуса и перехода.

Допускается максимальное значение только по одному из указанных параметров. После импульса должно пройти оговоренное время, чтобы прибор успел остыть.

Виды диодов

Кроме описанных диодов, используются диоды, у которых характеристики изменены за счет примесей и конструкторских доработок. Остановимся на двух из них: стабилитроне и светодиоде.

Стабилитроны

Работа стабилитрона отличается от работы диода. Подключается он в обратном направлении, то есть на анод подают отрицательное напряжение, а на катод положительное. При таком подключении он работает в пробивном режиме.

Стабилитроны рассчитаны на определенное рабочее обратное напряжение, при достижении которого происходит обратимый пробой. Используются для поддержания определенного напряжения на контролируемом участке цепи. Чтобы ток не превышал рабочее значение, в цепь стабилитрона ставят ограничивающий резистор.

Светодиоды

У полупроводниковых приборов p-n-переход из-за внутреннего сопротивления постоянно греется. Это происходит главным образом во время захвата дырками электронов. Высвобождается энергия, нагревающая переход.

В 60-х годах прошлого столетия был создан светодиод, в котором часть высвобождаемой энергии была лучистой с красным и желто-зеленым свечением. Правда, процентное соотношение было маленьким, всего 0,1% от всей высвобождаемой энергии. Но это было только началом.

В 70-х годах упорные разработки привели к хорошим показателям. Сначала это был 15% выход, затем дошло до 55%. Такой показатель уже превышал к. п. д. ламп накаливания. Испускаемый свет имеет очень узкий спектр, что позволяет получать очень качественное цветное свечение.

Оно намного превосходит свет ламп накаливания, пропущенных через светофильтр. Мощность светового потока также была поднята, это дало возможность использовать светодиоды в качестве освещения.

Тиристоры

Тиристоры – это общее название для мощных диодов, работающих в режиме ключа. Подразделяются на три вида:

  1. тринистор;
  2. динистор;
  3. симистор.

Тринистор имеет три вывода: анод, катод и управляющий электрод. При подаче небольшого управляющего напряжения на управляющий электрод тринистор открывается. Динистор открывается при достижении заданного напряжения на его двух выводах. Симистор – это два динистора, включенных навстречу друг другу. То есть он работает, в отличие от динистора, в двух направлениях.

Исследуя, что такое диод, можно открыть для себя еще много удивительных знаний. Здесь были рассмотрены лишь поверхностные познания, но они уже могут дать понять, что такие элементы радиотехники очень полезны и разнообразны в своем применении.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector