Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электроэрозионные станки: виды и принципы работы

Электроэрозионные станки: виды и принципы работы

электроэрозионный станок

Оборудование для электрофизических методов обработки токопроводящих заготовок широко используется при получении сложных отверстий и полостей, а также при изготовлении изделий из твёрдых сплавов. На электроэрозионных станках можно производить не только съём материала, но также вести упрочняющую обработку и поверхностное легирование, подробнее здесь http://meatec.ru/.

Основы классификации

По характеру электрического разряда и способам его генерации различают электроэрозионные станки, которые используют искровой, импульсный или дуговой, стационарный разряд.

Выбор вида оборудования определяется требованиями производительности (наибольшей производительностью отличаются электродуговые станки), качества поверхности (наименьшая шероховатость свойственна при обработке искровым разрядом), а также получающейся в результате электроэрозии глубиной термически изменённого слоя.

Электроискровые станки

Формообразование поверхностей или отверстий в таких агрегатах происходит при возбуждении искрового разряда между катодом и анодом. Между ними всегда должен поддерживаться постоянный межэлектродный зазор.

Электроискровые станки различают по виду обрабатывающего электрода. Им может быть тонкая латунная или медная проволочка, которая с определённой скоростью протягивается через зону обработки, либо профилированный инструмент из графита марок МПГ или ЭПГ. В первом случае говорят об обработке непрофилированным электродом, а во втором — о профилированном. Электроискровые станки применяют в тех случаях, когда важна точность обработки, а не удельный съём металла.

Электроимпульсные станки

В отличие от предыдущего вида оборудования для электроэрозии, здесь разряд возбуждается специальным устройством — генератором импульсов. Для прямой полярности тока заготовка служит анодом, а обрабатывающий инструмент – катодом (при обратной полярности располюсовка – противоположная). При уменьшении скважности процесса (промежутка времени между отдельными актами эрозии) производительность обработки (съём материала) увеличивается.

Помимо генератора импульсов такой станок включает в себя электродную головку с инструментом (он может вращаться, а может совершать поступательные перемещения), ванну с жидким диэлектриком (маслом), где закреплена обрабатываемая заготовка, механизм подачи электрода-инструмента, фильтры для очистки рабочей среды от продуктов эрозии и станину.

Электродуговые станки

На таком оборудовании обработка ведётся дуговым разрядом в поперечном потоке среды-диэлектрика. Поскольку дуга горит непрерывно, то удельная мощность разряда повышается в десятки раз, что положительно сказывается на производительности обработки. Сжатие столба дуги (что важно для обеспечения размерной точности обработки) происходит вследствие высокого давления поперечного потока рабочей среды. Станки для размерной обработки электрической дугой включают в себя насосную станцию для прокачки жидкости, инструментальную головку с профилированным электродом-инструментом (изготавливаются из графита, реже – из меди и чугуна), герметизированную камеру, в которой ведётся обработка, станину и источник питания дуги, в качестве которого принимают обычный сварочный генератор или преобразователь.

Современные электроэрозионные станки оснащаются системами автоматического программного управления.

Электроэрозионные станки

Процесс электроэрозионной обработки (ЭЭО) токопроводящих материалов основан на принципе направленного разрушения анода (заготовки), который находится в жидкой диэлектрической среде, в результате прохождения между ним и катодом (рабочим инструментом) электрического разряда большой мощности. Ввиду значительных технологических возможностей метода, он реализуется на электроэрозионных станках различного исполнения.

Координатно-прошивочный электроэрозионный станок

Структура и разновидности оборудования для ЭЭО

Типовой электроэрозионный станок включает в себя:

  1. несколько автономно действующих друг от друга электродвигателей;
  2. узел подачи электрода-инструмента;
  3. ванну с рабочей средой;
  4. стол для размещения обрабатываемой заготовки;
  5. схему управления.

Классификация рассматриваемого оборудования производится по следующим признакам:

  • По технологическому предназначению. Можно выделить универсальные, специализированные и специальные станки для ЭЭО;
  • По принципу компоновки основных узлов. Её можно сделать горизонтальной и наклонной, но чаще используется вертикальная компоновка;
  • По типу стола: неподвижный или координатный;
  • По типу ванны – съёмная или поднимающаяся;
  • По степени точности – оборудование для работ обычной точности и прецизионное;
  • По принципу возбуждения и последующего регулирования параметров электрического разряда.

Размерный ряд видов электроэрозионного оборудования отечественного производства определяется требованиями ГОСТ 15954.

Способы получения электрического разряда в рабочих цепях станков

Размерную обработку можно производить искровым, импульсным и дуговым разрядами. В первом случае между катодом и анодом образуется искровой разряд малой скважности, но с точно заданными характеристиками межэлектродного промежутка. Такие станки компактны, отличаются высокой точностью работы и качеством поверхности после электроэрозии, удобством регулирования технологическими показателями, но одновременно имеют малую мощность, и, следовательно – производительность. Области целесообразного использования таких станков – точная разрезка труднообрабатываемых материалов (в частности, твёрдых сплавов), получение деталей со сложными контурами. Их можно также использовать для извлечения сломанного инструмента и т.п.

Схема проволочно-вырезного электроэрозионного станка

Схема проволочно-вырезного электроэрозионного станка

Повышение энергии электрического разряда достигается введением в схему генератора импульсов, который увеличивает интервал между смежными разрядами и одновременно увеличивает тепловую мощность при единичном электроэрозионном акте. Как следствие, производительность работы увеличивается, но зато снижаются точность, а поверхность обработанной детали может иметь довольно протяжённую зону термического влияния, что не всегда допустимо. Электроимпульсные станки применяются там, где требуется более значительный съём металла в единицу времени.

Читайте так же:
Самодельный инструмент и приспособления своими руками

При необходимости обеспечить ещё более высокий съём металла (причём не только для формоизменения исходной заготовки, но и для её упрочнения) применяются электродуговые станки. Производительность такого оборудования увеличивается в несколько десятков раз, поскольку дуга, в отличие от остальных видов электрического разряда, горит непрерывно. Для управления технологическими параметрами дугового разряда он сжимается поперечным потоком среды-диэлектрика, которая постоянно, и под большим давлением прокачивается через зону горения дуги насосной установкой, предусмотренной в схеме станка. Электродуговыми станками можно изготовить крупные заготовки под валки, молотовые штампы горячей штамповки и т.д.

Применение электроэрозионных станков разных типов

Из оборудования электроискрового типа одним из наиболее точных считается копировально-прошивочный станок МА4720. Он предназначен для работы с труднообрабатываемыми заготовками сложной конфигурации, например, для твёрдосплавной штамповой оснастки, пресс-форм, кокилей. Производительность станка не превышает 70 мм 3 /мин, зато можно достичь точности в 0,03…0,04 мм, при достаточно невысокой шероховатости конечной поверхности (не выше Rz 0,32…0,4 мкм на чистовых режимах обработки). Перемещение рабочего стола производится системой ЧПУ. Размеры рабочего стола и допустимый диапазон значений межэлектродного зазора между анодом и катодом не позволяет получать на данном станке изделия с габаритными размерами более 120?180?75 мм.

Примером электроимпульсного станка является распространённая модель 4Е723, также оснащаемая ЧПУ. Более высокие показатели удельной мощности позволяют достигать производительности ЭЭО до 1200м 3 /мин, при погрешности обработки на чистовых режимах в пределах 0,25…0,1 мм. Более высокая точность достигается при ЭЭО фасонных поверхностей. Станок также используется преимущественно в инструментальном производстве, однако шероховатость поверхности заметно увеличивается – до Ra 2,5 мкм, поэтому после обработки в большинстве случаев потребуется шлифование. На станке можно выполнять ЭЭО деталей с габаритными размерами 620?380?380 мм, а также прорезание фасонных пазов.

Данные виды относятся к универсальным электроэрозионным станкам. Примером специализированного оборудования является электроэрозионный станок модели 4531, производящий профильную вырезку сложных контуров при помощи непрофилированного электрода. На станке 4531 применяется латунная проволока, которая непрерывно перематывается через межэлектродный промежуток, возбуждая разряд между катодом и анодом. При относительно невысокой производительности (не более 16…18 мм 3 /мин по стали; для твёрдого сплава производительность ещё ниже), станок 4531 в принципе позволяет обеспечить погрешность ±0,01 мм, поэтому рассматриваемое оборудование эффективно при производстве матриц вырубных штампов особо сложной конфигурации и шаблонов. Максимальные размеры вырезаемого контура составляют 100?60 мм.

Принципы оптимального выбора технологии и типоразмера станка для ЭЭО

Исходными данными являются точность контура, размеры (глубина) термически изменённой зоны, а также желаемое значение съёма в единицу времени. Для станков, работающих с непрофилированными электродами, важно наличие устройств для автоматической заправки проволоки, а для импульсных станков – генераторов, позволяющих использовать биметаллическую проволоку, которая повышает производительность ЭЭО.

Для повышения качества процесса и снижения эрозионного износа электрода-инструмента в качестве рабочих сред лучше использовать масло (наиболее употребительна смесь масла «индустриальное-20» с керосином). В принципе, для изделий с увеличенными допусками, возможно использование и воды.

Технологические возможности электроэрозионных станков значительно расширяются наличием дополнительных приспособлений (например, для получения конических поверхностей).

Для съёма металла от 20000 мм 3 /мин и выше нужно применять только электродуговые станки. Наименьшая погрешность работы такого оборудования достигается на обратной полярности при использовании графитовых электродов. Вместе с тем, сравнительно высокая шероховатость поверхности – не ниже Rz 0,8…1,6 мкм – вынуждает после ЭЭО дуговым разрядом предусматривать чистовое шлифование полученного контура. Давление прокачки рабочей среды должно быть не менее 50…60 кПа.

Электроэрозионный станок — принцип работы, устройство и назначение

Обработка материалов с плотной структурой ручным способом малоэффективна, так как требует больших трудозатрат и не обеспечивает высокой точности. Среди установок, которые позволяют в какой-то степени или полностью (зависит от вида и модели) автоматизировать процесс, электроэрозионные станки менее известны, хотя они и отличаются уникальными возможностями, что выгодно выделяет их среди большинства «собратьев» по станочному парку.

Об особенностях, принципе работы и специфики применения электроэрозионных станков и будет рассказано в предлагаемом читателю материале.

e-3

Общая информация

  • Независимо от модели, электроэрозионные станки имеют ограничение по обработке деталей. Они могут использоваться для выполнения различных операций лишь в том случае, если образец изготовлен из материалов категории «токопроводящие» (металлы, сплавы).
  • Существует несколько методик электроэрозионного воздействия на изделие, отличающихся как способом подачи электрических разрядов, так и параметрами импульсов. В соответствие с этим, все подобные станки позволяют изготавливать детали по-разному, в зависимости от ожидаемого результата.
  • Несомненный плюс электроэрозионных установок – возможность ведения обработки образца одновременно по разным направлениям.
Читайте так же:
Шлифовальная машина по бетону вертолет

Что может получиться в результате, показано на схемах (наиболее распространенные варианты использования электроэрозионных станков).

e-4

Способы обработки заготовок

  • эл/импульсный;
  • эл/искровой;
  • анодно-механический;
  • эл/контактный.

Виды технологических операций

e-5

  1. Упрочнение структуры.
  2. Шлифовка.
  3. Маркирование.
  4. Вырезание.
  5. Доводка.
  6. «Прошивка».
  7. Отрезка.
  8. Объемное копирование.
  9. Обработка:
  • электроэрозионно-абразивная;
  • анодно-механическая;
  • электрохимическая;
  • комбинированная.

Возможности электроэрозионного оборудования

Спектр использования электроэрозионных станков действительно огромен. Из основных технологических операций можно выделить:

  • получение отверстий (глухих проемов, углублений) самой сложной конфигурации, при необходимости, с резьбой;
  • выборка материала на любую глубину с внутренних поверхностей образцов;
  • выполнение операций, которые невозможно или экономически нецелесообразно проводить на других типах станков (фрезерных, токарных);
  • изготовление деталей из материалов, трудно поддающихся обработке традиционными инструментами (например, титан и сплавы на его основе).

e-6

Принцип работы станков электроэрозионного типа

Несмотря на разницу в конструктивном исполнении оборудования и реализуемых способах электроэрозионной обработки, принцип функционирования остается одинаковым.

e-7

Условно процесс можно разделить на два технологических этапа.

e-9

Первый. Под воздействием импульсных разрядов, поступающих «по плазменному каналу» (10), разрушается структура образца (2) на данном участке. Они появляются в определенный момент при сближении электрода (4), являющимся рабочим инструментом станка, с деталью. Электрическая энергия преобразуется в тепловую, и как результат – расплавление металла (сплава) на требуемом по ТУ участке.

Второй. Так как и деталь, и электрод погружены в емкость со спец/составом (чаще всего это масло), металл частично испаряется от высокой температуры, а остатки расплава удаляются из рабочей зоны.

В зависимости от реализуемого способа обработки и инженерного решения в конструкции станка, параметры импульсов, технология их генерирования и ряд других факторов в различных моделях электроэрозионных установок могут отличаться. Но принцип работы оборудования остается прежним.

В принципе, такую «чудо-машину», как электроэрозионный станок, можно изготовить самостоятельно. Но кажущаяся простота сборки обманчива. Прежде чем приниматься за работу, следует оценить свои силы. Главная сложность, с которой столкнется «домашний умелец» – монтаж (а перед этим точный расчет параметров) искрового генератора. Кроме того, эксплуатация данного станка требует особой осторожности, так как емкость с маслом в любой момент может воспламениться. Автор не ставит целью отговорить читателя от самостоятельного изготовления бытового электроэрозионного станка, но обратить внимание на ряд моментов просто обязан.

Принцип работы, устройство и назначение электроэрозионного станка

Электроэрозией называют разрушение верхних слоёв металла под действием электротока. Способ обработки металлов, основанный на использовании электрической эрозии, был впервые разработан учёными Б. Р. Лазаренко и Н. И. Лазаренко в СССР ещё в первой половине XX века.

В ходе ЭЭО в зоне электрического разряда при высоком температурном воздействии материал нагревается, плавится и начинает испаряться. Для обеспечения таких условий необходим мощный источник энергии – генератор импульсов. Весь процесс проходит в специальной жидкости, заполняющей небольшое пространство между электродами. Последними в данном случае являются обрабатывающий инструмент и сама деталь.

Силы, возникающие в канале разряда в ходе металлообработки, выбрасывают расплавленный и испарённый метал в рабочую жидкость, где он охлаждается, оседает и в итоге выводится из рабочего пространства в виде небольших твёрдых частиц. На обрабатываемом участке заготовки появляются лунки, которые называют эрозионными.

Актуальные госстандарты выделяют несколько базовых разновидностей ЭЭО:

  • Вырезание (ЭЭВ) и отрезка (ЭЭОт);
  • Прошивание (ЭЭПр);
  • Объёмное копирование (ЭЭОК);
  • Шлифование (ЭЭШ);
  • Маркирование (ЭЭМ);
  • Упрочнение (ЭЭУ).

ЭЭО служит для работы с заготовками сложной формы, получения фасонных полостей, изготовления в твердосплавных деталях различных канавок, прорезей и пазов, а также для резки, шлифовки и многих других производственных операций. Схему ЭЭО вы можете увидеть ниже.

Схема ЭЭО. 1 – ЭИ, 2 – заготовка, 3 – РЖ, 4 — конденсатор, 5 – реостат, 6 – источник электропитания, 1р – электроискровый режим, 2р – электроимпульсный режим.

Электроискровый режим

Деталь либо заготовка в этом режиме имеет положительный заряд и является анодом. Поток частиц обрабатывает поверхность материала, расплавляя его в виде лунки. Чтобы поток не деформировал ЭИ, необходимо использовать импульсы напряжения длительности не выше 10-3 с. При работе в электроискровом режиме слой снимаемого металла будет небольшим, поэтому такой метод лучше подходит для точной чистовой обработки.

Электроимпульсный режим

В этом режиме деталь имеет отрицательный заряд и является катодом. Она принимает на себя напряжение длительностью выше 10-3 с, под действием которого между ней и электрод-инструментом образуется дуговой разряд. Ионный поток, возникающий в ходе такой обработки, получается достаточно мощным, чтобы снимать большой слой металла с высокой скоростью. В сравнении с электроискровым режимом, при электроимпульсном воздействии продуктивность ЭЭО повышается примерно в 8 раз, однако страдает качество и чистота обработки.

Читайте так же:
Подсоединение электродвигателя звездой и треугольником

Теперь, когда освещены основные виды и режимы ЭЭО, рассмотрим принципы работы и типологию станков, на которых она производится.



Шпиндельные узлы станка

Конструкция прошивочной головки ЭЭ станка

Рис. 4 — Конструкция прошивочной головки ЭЭ станка

В качестве шпинделя у ЭЭП станков является прошивочная головка, рассмотреть ее можно на рисунке 4, который представлен выше.

  1. Гидростатическая направляющая;
  2. Шпиндель;
  3. Гидроцилиндр;
  4. Вал
  5. Гидротормоз
  6. Редуктор
  7. Гидропанель
  8. Корпус
  9. Стяжка
  10. Переходная плита

Электроэрозионный станок: строение и виды

Электроэрозионным станком (ЭЭС) называют устройство, предназначающееся для металлообработки методом электрической эрозии. По принципу работы принято выделять универсальные и специальные ЭЭС двух типов: вырезные и копировально-прошивочные.

Копировально-прошивочные ЭЭС

Такие станки изготавливают повышенной точности либо в стандартной модификации. Чаще всего они имеют вертикальную компоновку и неподвижный либо координатный стол со съёмной или подъёмной ванной. Современные модели оснащают функцией адаптивного программируемого управления, что значительно расширяет спектр операций, доступных устройству.

  • Обработка отверстий со сложным профилем (фильеры, щели и др.);
  • Изготовление элементов рабочих компонентов пресс-форм, фильер, штампов;
  • Прошивка отверстий, извлечение остатков инструмента из крупногабаритных изделий (переносных станков и т. д.).

Схема копировально-прошивочного ЭЭС с электрогидравлическим приводом подачи ЭИ

Вырезные ЭЭС

Благодаря особым генераторам с биметаллической проволокой вырезные электроэрозионные станки имеют производительность на 60-70% большую, чем устройства копировально-прошивного типа. При работе с геометрически сложными поверхностями (н-р конусами) используют дополнительное оборудование.

Сфера применения вырезных ЭЭС достаточно широка. Их применяют в автомобиле- и приборостроении при вырезке сложных деталей, матриц для экструдирования, различных шаблонов, в изготовлении изделий массового потребления (инструменты, предметы декора и т. д.).

Устройство ЭЭС вырезного типа.

Приводы подач станка

Электроэрозионное разрушение осуществляется в рабочей среде, которая подаётся в МЭП. Поэтому каждый ЭЭП станок оснащен системой подачи рабочей жидкости, что представлено на рисунке 5. Так как в процессе обработки происходит загрязнение рабочей жидкости, то в компоновку станка входит и система регенерации рабочей жидкости. В ЭЭП станках обычно эти две системы объединены.

Система подачи и регенерации РЖ

Рис. 5 — Система подачи и регенерации РЖ

  1. Емкость
  2. Гидроносос
  3. Манометр
  4. Система фильтрации
  5. Гидрораспределитель
  6. Вентиль
  7. Гидроприемник
  8. Ротаметр
  9. Кран
  10. Кран
  11. ЭИ
  12. Деталь
  13. Рабочая ванна
  14. Слив

Рабочая жидкость из емкости >> гидронасос. Регулирование подачи рабочей жидкости — манометром. Поток рабочей жидкости >> систему фильтрации >> гидрораспределитель. При превышении требуемого давления открывается вентиль и часть рабочей жидкости >> гидроприемник >> либо через кран 10 в рабочую ванну, либо через кран 9 через полый ЭИ. Обрабатываемая деталь находится в рабочей ванне. Для регенерации рабочая жидкость >> рабочей ванны через слив.

Принцип работы ЭЭС

Электроэрозионная обработка на станке проходит через несколько основных этапов:

Процесс ЭЭО: электроды (1), жидкость-диэлектрик (2), лунки (3), газ (4) и шлам (5).

  1. К электродам (1) подаётся напряжение, создающее между ними электрическое поле. При уменьшении этого промежутка до критического значения меж электродами образуется разряд, создающий проводящий канал.
  2. Чтобы повысить эффективность разряда, катод и анод помещаются в жидкость-диэлектрик (2). Материал каждого электрода имеет микроскопические неровности и выступы, максимальная напряжённость электрического поля возникает между двумя самыми близко расположенными выступами. В этом промежутке появляются проводящие «мостки» из примесей РЖ.
  3. В ходе нагрева жидкости и её испарения под действием электротока возникает пузырь из газа (4). Внутри него происходит сильный дуговой либо искровой разряд, сопровождаемый ударной волной. Возникшие как следствие разряда потоки частиц (ионы, электроны) летят к электродам, способствуя поддержанию канала разряда.
  4. Концентрируемая в зоне разряда энергия увеличивает температуру в ней до огромных значений. Электродные поверхности начинают плавиться и частично испаряться, а капли расплавленного материала подхватываются диэлектрической жидкостью и выводятся в виде небольших фрагментов (5).

Несущая система станка

Станина ЭЭП станков выполнена в виде коробки, которая придает конструкции устойчивость и повышенную жесткость. Каретка барабана, крепления колонны, направляющие стола, являются ответственными частями станины, которые подвергаются шабрению и полированию.

Для того, чтобы изготовить станину нужно использовать материалы, которые будут обладать высокой прочностью и иметь небольшой коэффициент теплового расширения. Для изготовления станины ЭЭП станка применялся особый вид чугуна — высокопрочный.

Требования к ЭИ и РЖ для электроэрозионных станков

Согласно действующим нормативным документам, РЖ для электроэрозионной металлообработки должна:

  • Способствовать высокой продуктивности ЭЭО;
  • Иметь низкий уровень испаряемости;
  • Обладать стабильными физико-химическими свойствами;
  • Иметь хороший уровень фильтруемости, невысокую коррозионную активность в отношении материалов ЭИ и детали;
  • Не содержать токсичных веществ в составе.
  • Обладать температурой вспышки паров не ниже 61 оС.

Большое распространение в области ЭЭО получили низкомолекулярные углеводородные жидкости различных уровней вязкости, вода, растворы на основе воды и двухатомных спиртов, кремнийорганические жидкости. Оптимальные для того или иного метода обработки параметры обеспечивают специализированные РЖ. Эффективность использования жидкости снижается в зависимости от степени её загрязнённости шламом. Замену РЖ чаще всего производят при падении электропроводности ниже 0,05 См/м.

Читайте так же:
Напыление цинка на металл

Электрод-инструмент, используемый при ЭЭО, должен обеспечивать стабильную работу станка во всём диапазоне его рабочих режимов и способствовать наибольшей производительности при минимальном износе. Качественный ЭИ обладает следующими свойствами:

  • Жёсткость и высокая сопротивляемость механической деформации;
  • Стойкость к высокотемпературным воздействиям;
  • Отсутствие царапин, трещин, вмятин и других дефектов;
  • Шероховатость Ra = 2,5:0,63 мкм.

Для работы с углеродистыми сталями, жаропрочными сплавами применяются электрод-инструменты из меди и графита. В черновой обработке этих же материалов используются чугунные и алюминиевые ЭИ. Тугоплавкие и твердосплавные материалы обрабатывают посредством композиционных медных и вольфрамовых ЭИ. Конкретный материал и тип выбранного инструмента зависит от обрабатываемой детали, сложности её формы, размеров, материала и других параметров.

Выбор технических характеристик станка

Проанализируем, при каких «критериях» выбираются электроэрозионные станки.

1) Геометрические параметры

Для того чтобы выбрать прошивной станок, который в свою очередь создает размерный ряд, нужно для начала просмотреть массу и габаритные размеры.

2) Производительность

Влияние электроэрозионных станков на производительность:
  • параметры импульсов разрядного тока;
  • условия подвода рабочей жидкости и характеристики ее потока;
  • материал и качество электрод-инструмента;
  • способ защиты проволоки от обрывов.

3) Точность

Критерии от которых зависит точность:

— точность и повторяемость позиционирования по различным осям;

— динамические характеристики приводов;

— уровень температурных деформаций;

— стабильность параметров импульсов генератора;

— устойчивость устройства ЧПУ к помехам.

4) Шероховатость

Для обработки деталей важно достигнуть определенной шероховатости. Факторы, которые влияют на шероховатость детали:
  1. Энергия разряда;
  2. Сила тока;
  3. Материал электрода-инструмента.

Для примера на рисунке 1 приведена таблица технических характеристик трех электроэрозионных станков.

Проволочный электроэрозионный станок

Электроэрозионная обработка металлов и других токопроводящих материалов (ЭЭО) – самостоятельный вид металлообработки, который используется для получения отверстий и полостей сложной формы. ЭЭО эффективна при размерном формообразовании труднообрабатываемых материалов, применяется для целей поверхностного упрочнения инструмента, а также в ремонтном производстве, для извлечения из стальных изделий сломанных свёрл, метчиков и т.п. По вышеперечисленным направлениям выпускается и соответствующее оборудование.

Принцип работы станков электроэрозионной обработки

Независимо от технологического назначения, в ЭЭО-станках используется явление размерного плавления металла или сплава в результате термического воздействия электрического разряда весьма большой мощности. Им может быть электрическая искра или электрическая дуга. С этой целью обрабатываемую заготовку включают в электрическую цепь станка. В результате последовательно реализуются следующие переходы:

  1. Заготовка и инструмент устанавливаются на станке, присоединяются к источнику рабочего тока, и помещаются в ёмкость с диэлектрической рабочей жидкостью.
  2. При включении энергетической части привода станка происходит накапливание электрического потенциала на границах смежных электродов заготовки и инструмента. Его конфигурация должна соответствовать размерам полости или контура на будущем изделии.
  3. По достижении требуемой разности потенциалов происходит бой межэлектродного промежутка с созданием направленного разряда, вызывающего электрическую эрозию материала. Если преимущественному разрушению подвергается катод, то говорят об ЭЭО на прямой полярности электрического тока, а если анод – то об обратной полярности.
  4. Продукты эрозии либо принудительно удаляются из зоны обработки специальной насосной установкой, либо скапливаются на дне емкости, и извлекаются оттуда после окончания цикла ЭЭО.
  5. После отключения напряжения ионизированные высоковольтным разрядом частицы в рабочей жидкости исчезают, и её диэлектрическая прочность восстанавливается.

Принцип работы станков электроэрозионной обработки

Если электрическая эрозия вызывается нестационарным электрическим разрядом, то такое оборудование называют электроискровыми или электроимпульсными ЭЭО-станками.

Разница между ними заключается в следующем. Электроимпульсные станки, в отличие от электроискровых, имеют в своём составе специальный узел – шаговый генератор импульсов – который обеспечивает периодическое формирование высоковольтного разряда. Его параметры должны быть достаточными для размерного плавления и испарения обрабатываемого материала. В результате возрастает мощность и производительность ЭЭО.

Кроме того, управляя параметрами импульса – его продолжительностью, интенсивностью и скважностью (соотношением времени действия импульса ко времени его накопления) – можно изменять полярность ЭЭО. Например, при малых по времени импульсах будет преобладать электрическая эрозия анода, а при увеличенных – катода. Это важно для правильного применения ЭЭО-станков для обработки разных по своему составу и структуре материалов.

При электродуговой обработке источником тепла, производящего разрушение металла заготовки, является стационарный разряд. Дуга горит непрерывно, поэтому станки такого типа отличаются повышенной производительностью, но меньшей точностью обработки. При дуговой обработке главным параметром считается сила тока, а не напряжение на электродах. Поэтому для привода таких станков применяются сварочные генераторы или преобразователи – оборудование, гораздо более дешёвое и простое в управлении, чем генераторы импульсов. Область рационального использования электродугового оборудования – получение отверстий и полостей значительных размеров при повышенных требованиях к производительности обработки.

Читайте так же:
Температура плавления 100 градусов

Классификация ЭЭО-станков

Электроэрозионные станки различают в зависимости от их технологического назначения. Выпускаются как универсальное, так и специализированное оборудование, которое может оснащаться ЧПУ, либо действовать в ручном режиме.

Основными операциями, на которых целесообразно использовать ЭЭО-станки, являются:

Электроэрозионная резка

  1. Вырезка по сложному контуру. Она может выполняться профилированным электродом-инструментом, либо проволочкой из токопроводящего материала.
  2. Прошивка-копирование, при которой форма электрода-инструмента должна соответствовать размерам и конфигурации полости или сквозного отверстия. При извлечении сломанных инструментов используется обычная прошивка сплошным или трубчатым электродом.
  3. Электроэрозионное шлифование, при котором выполняется доводка полученной заготовки по параметрам точности и шероховатости поверхности. Электродуговые станки могут выполнять как грубую так и точную ЭЭО: для этого им достаточно только скорректировать некоторые технические характеристики процесса.
  4. Поверхностное электроупрочнение, при котором съёма металла практически не происходит, а обрабатываемая поверхность заготовки насыщается атомами химических элементов, содержащихся в электроде-инструменте. Направленный перенос возможен не только из электрода, но и из состава рабочей жидкости, которая пиролизуется под действием высокотемпературного разряда.
  5. Электроэрозионная маркировка, в результате которой на поверхности могут наноситься клейма или иные условные обозначения.
  6. Электроэрозионная приработка сопрягаемых деталей (шестерён, пуансонов, матриц). Она ведётся при малых значениях тока и напряжения.

Классификация станков для ЭЭО может быть выполнена и по их компоновке. В основном такое оборудование – вертикального исполнения, однако для электродуговой обработки длинномерных заготовок, например, твердосплавных валков прокатных станов, изготавливаются и станки горизонтального типа.

Из основных конструктивных различий ЭЭО-станков необходимо отметить исполнение и размеры стола (координатный или обычный), а также ванны с рабочей жидкостью, которая может быть съёмной или перемещающейся вверх-вниз.

Важным классификационным признаком рассматриваемого оборудования считается его возможность программного управления, что немаловажно из-за высокой продолжительности обработки заготовок. Поэтому станки электроимпульсного и электроискрового типа часто изготавливаются с системами ЧПУ (для электродуговых станков, имеющих на порядок более высокую производительность, это не существенно).

Отечественные ЭЭО-станки выпускаются в соответствии с требованиями ГОСТ 15894. Из зарубежного аналогичного оборудования наилучшим качеством отличаются станки швейцарской фирмы Agie, японской торговой марки Mitsubishi и итальянской компании Сarbomatic.

Основные узлы ЭЭО-станков и их действие

Копировально-прошивочный станок

Типовой копировально-прошивочный станок вертикальной компоновки, снабжённый электрогидравлической системой привода рабочих органов, состоит из следующих узлов:

  1. Г-образной станины, регулируемой по высоте.
  2. Рабочей головки, в которой смонтирован узел электрода-инструмента.
  3. Привода двухкоординатного перемещения рабочей головки (на некоторых типоразмерах станков имеется ещё и орбитальная головка, благодаря которой электрод-инструмент может вращаться).
  4. Рабочего стола, на котором закрепляется обрабатываемая заготовка.
  5. Ванна с рабочей жидкостью, которая снабжена винтовой передачей для своего подъёма-опускания.
  6. Электродвигателей: главного привода, привода рабочей ёмкости и орбитальной головки.
  7. Системы управления.

В самостоятельном корпусе размещается шаговый генератор импульсов, который включается в общую электрическую схему станка. Эти устройства должны отвечать следующим требованиям:

  • Отличаться возможно более высоким КПД;
  • Стабилизировать во времени все параметры электрического разряда;
  • Иметь возможность максимального регулирования рабочей частоты импульса;
  • Обеспечивать такие параметры электрического разряда, при которых износ электрода-инструмента, производительность процесса и качество обработки заготовки будут оптимальными.

Отечественные генераторы импульсов системы ШГИ оснащаются встроенными регуляторами подачи электрода-инструмента и блоками предотвращения короткого замыкания.

Узлы подачи рабочей головки в станках, использующих для ЭЭО нестационарный электрический разряд, могут быть трёх основных типов – соленоидного, электромеханического и электрогидравлического. Первый применяется в установках малой мощности, второй – преимущественно для агрегатов, производящих электроискровое разрезание. Наиболее универсальным считается электрогидравлический привод. Его недостатки – несколько меньшая производительность на вспомогательных переходах и необходимость в дополнительных площадях под гидравлические компоненты, ответственные для очистки и перекачки рабочей среды.

Устройство электроэрозионного станка

Электродуговые станки

Электродуговые станки состоят из:

  1. Станины рамного типа.
  2. Рабочей головки с электродом-инструментом и контрольно-следящей системой его перемещения во время ЭЭО.
  3. Насосной станции для прокачки рабочей жидкости под повышенным давлением (это необходимо для повышения качества ЭЭО стационарным дуговым разрядом).
  4. Герметизирующей камеры, внутрь которой устанавливается заготовка.
  5. Рабочего стола.
  6. Источника питания постоянного тока.

Рабочий цикл такого оборудования включает в себя установку на стол заготовки, подлежащей ЭЭО, последующего размещения герметизирующей камеры, подвода инструментальной головки с электродом-инструментом и включения насосного привода подачи рабочей среды. После этого включается источник питания, возбуждается дуговой разряд и производится обработка. Подача электрода-инструмента выполняется автоматически. По достижении требуемого значения напряжения на дуге происходит пробой межэлектродного промежутка, и возникающий столб дуги, сжатый потоком рабочей среды производит размерное формообразование. Продукты эрозии удаляются насосной установкой через рабочие отверстия в электроде-инструменте.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector