Montagpena.ru

Строительство и Монтаж
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Широтно-импульсная модуляция

Широтно-импульсная модуляция

Широ́тно-и́мпульсная модуля́ция (ШИМ, англ.  pulse-width modulation (PWM) ) — процесс управления мощностью методом пульсирующего включения и выключения потребителя энергии. Различают ана́логовую ШИМ и цифрову́ю ШИМ, дво́ичную (двуху́ровневую) ШИМ и трои́чную (трёхуровневую) ШИМ [1] .

Содержание

Причины применения ШИМ [ править | править код ]

Основной причиной применения ШИМ является стремление к повышению КПД при построении вторичных источников питания электронной аппаратуры и в других узлах, например, ШИМ используется для регулировки яркости подсветки LCD-мониторов и дисплеев в телефонах, КПК и т. п.

Тепловая мощность, выделяемая на ключе при ШИМ [ править | править код ]

В ШИМ в качестве ключевых элементов используют транзисторы (могут быть применены и другие полупроводниковые приборы) работающие не в линейном, а в ключевом режиме, то есть транзистор всё время либо разомкнут (выключен), либо замкнут (находится в состоянии насыщения). В первом случае транзистор имеет очень высокое сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность очень мала. Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю, при этом выделяемая мощность так же мала. В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность, выделяемая в ключе, значительна, но так как длительность переходных состояний крайне мала по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной:

Принцип работы ШИМ [ править | править код ]

Реализуемый в контроллерах широтно-импульсный модулятор состоит из двух блоков: линейного интегратора (И-звена) и трехпозиционного релейного элемента. Установленными при изготовлении изделия параметрами схемы являются: постоянная времени И-звена Ти и уровень сигнала на выходе релейного элемента ±А.

Широтно-импульсный модулятор генерирует последовательность импульсов со скважностью, пропорциональной уровню сигнала на его входе. Параметр его настройки, то есть минимальная длительность импульса, устанавливается с помощью зоны нечувствительности релейного элемента широтно-импульсного модулятора [2] .

Аналоговая ШИМ [ править | править код ]

ШИМ-сигнал генерируется аналоговым компаратором, на один вход (по рисунку — на инвертирующий вход компаратора) которого подаётся вспомогательный опорный пилообразный или треугольный сигнал значительно большей частоты, чем частота модулирующего сигнала, а на другой — модулирующий непрерывный аналоговый сигнал. Частота повторения выходных импульсов ШИМ равна частоте пилообразного или треугольного напряжения. В ту часть периода пилообразного напряжения, когда сигнал на инвертирующем входе компаратора выше сигнала на неинвертирующем входе, куда подается модулирующий сигнал, на выходе получается отрицательное напряжение, в другой части периода, когда сигнал на инвертирующем входе компаратора ниже сигнала на неинвертирующем входе — будет положительное напряжение [3] .

Аналоговая ШИМ применяется в усилителях низкой частоты класса «D».

Цифровая ШИМ [ править | править код ]

В двоичной цифровой технике, выходы в которой могут принимать только одно из двух значений, приближение желаемого среднего уровня выхода при помощи ШИМ является совершенно естественным. Схема настолько же проста: пилообразный сигнал генерируется N-битным счётчиком. Цифровые устройства (ЦШИП) работают на фиксированной частоте, обычно намного превышающей реакцию управляемых установок (передискретизация). В периоды между фронтами тактовых импульсов выход ЦШИП остаётся стабильным, на нём действует либо низкий уровень, либо высокий, в зависимости от выхода цифрового компаратора, сравнивающего значение счётчика с уровнем приближаемого цифрового сигнала V(n). Выход за много тактов можно трактовать как череду импульсов с двумя возможными значениями 0 и 1, сменяющими друг друга каждый такт T. Частота появления единичных импульсов получается пропорциональной уровню приближаемого сигнала

V(n). Единицы, следующие одна за другой, формируют контур одного, более широкого импульса. Длительности полученных импульсов переменной ширины

V(n) кратны периоду тактирования T, а частота равна 1/(T*2 N ). Низкая частота означает длительные, относительно T, периоды постоянства сигнала одного уровня, что даёт невысокую равномерность распределения импульсов.

Описанная цифровая схема генерации подпадает под определение однобитной (двухуровневой) импульсно-кодовой модуляции (ИКМ). 1-битную ИКМ можно рассматривать в терминах ШИМ как серию импульсов частотой 1/T и шириной 0 либо T. Добиться усреднения за менее короткий промежуток времени позволяет имеющаяся передискретизация. Высоким качеством обладает такая разновидность однобитной ИКМ, как импульсно-плотностная модуляция     (англ.)  ( рус. , которая ещё именуется импульсно-частотной модуляцией.

Восстанавливается непрерывный аналоговый сигнал арифметическим усреднением импульсов за много периодов при помощи простейшего фильтра низких частот. Хотя обычно даже этого не требуется, так как электромеханические составляющие привода обладают индуктивностью, а объект управления (ОУ) — инерцией, импульсы с выхода ШИМ сглаживаются и ОУ, при достаточной частоте ШИМ-сигнала, ведёт себя как при управлении обычным аналоговым сигналом.

Читайте так же:
Супер клей для резины

В цифровой ШИМ период делится на части, которые заполняются прямоугольными подымпульсами. Средняя величина за период зависит от количества прямоугольных подымпульсов. Цифровая ШИМ — приближение бинарного сигнала (с двумя уровнями — вкл/выкл) к многоуровневому или непрерывному сигналу так, чтобы их средние значения за период времени t 2 − t 1 -t_<1>> были бы приблизительно равны.

Формально это можно записать так:

n выбирается таким образом, чтобы за период разность суммарных площадей (энергий) обеих величин была меньше допустимой:

Управляемыми «уровнями», как правило, являются параметры питания силовой установки, например, напряжение импульсных преобразователей /регуляторов постоянного напряжения/ или скорость электродвигателя. Для импульсных источников x(t) = Uconst стабилизации.

В цифровой ШИМ прямоугольные подымпульсы, заполняющие период, могут стоять в любом месте периода, на среднюю величину за период влияет только их количество. Например, при разбиении периода на 8 частей последовательности 11110000 , 11101000 , 11100100 , 11100010 , 11100001 и др. дают одинаковую среднюю за период величину, но отдельно стоящие «1» ухудшают режим работы ключа (транзистора).

В качестве ШИМ можно использовать даже COM-порт. Так как 0 передаётся как 0 0000 0000 1 (8 бит данных + старт/стоп), а 255 — как 0 1111 1111 1 , то диапазон выходных напряжений — 10—90 % с шагом в 10 %.

Управление многоуровневыми синусоидальными ШИМ (СШИМ) [ править | править код ]

Несколько методов были разработаны для сокращения искажения в многоуровневых инверторах, на основе классического СШИМ с треугольным носителем. Некоторые методы используют расположение источника, другие используют сдвиг фазы из нескольких несущих сигналов. Рисунок справа показывает типичное напряжение, сгенерированное одной секцией инвертора путем сравнения синусоидального сигнала с треугольным несущим сигналом.

Множество Nc-каскадов в одной фазе с их источниками, смещенными на угол θс = 360°/Nc и использующими то же управляющее напряжение, производят напряжение нагрузки с самым маленьким искажением. Этот результат был получен для многоэлементного инвертора в 7-уровневой конфигурацией, которая использует три подключенных последовательно сегмента в каждой фазе. Самое маленькое искажение получено, когда источник смещен на угол в θс = 360°/3 = 120°.

Довольно обыденной практикой в промышленном применении для многоуровневого инвертора является вставка третьей гармоники в каждый сегмент, как показано на Рисунок справа (b), для увеличения выходного напряжения. Ещё одна положительная сторона многоуровневого СШИМ-эффективная частота переключения напряжения нагрузки в Nc-количество раз, и частота переключения каждого сегмента, в зависимости от её несущего сигнала. Это свойство позволяет сокращать частоты переключения каждого сегмента, таким образом уменьшая потери на переключении.

Метод опорных векторов (MOB) [ править | править код ]

Техника МОВ может быть легко применима для всех многоуровневых инверторов. Рисунок справа показывает векторы пространства для традиционных двух-, трёх- и пятиуровневых инверторов. Эти векторные диаграммы универсальны независимо от типа многоуровневого инвертора. Другими словами, рисунок справа действителен для пятиуровневого зафиксированного на диод, зафиксированного на конденсатор, или расположенного каскадом инвертора. Смежные три вектора могут синтезировать желаемый вектор напряжения путем вычисления рабочего цикла (Tj, Tj+1, и Tj+2) для каждого вектора.

Пространственно-векторные методы ШИМ обычно имеют следующие преимущества: хорошее использование напряжения источника постоянного тока, низкая пульсация и относительно легкая аппаратная реализация цифровым сигнальным процессором (DSP). Эти функции делают его подходящим для высоковольтных и мощных потребителей.

С увеличением количества уровней существенно увеличиваются перегрузки и сложность переключения. Некоторые авторы использовали разложение пятиуровневой пространственно-векторной диаграммы в две трехуровневые пространственно-векторные диаграммы с фазовым сдвигом, чтобы минимизировать пульсации и упростить управление. Кроме того, простой пространственно-векторный метод был представлен без вычисления рабочего цикла смежных трех векторов.

Как из шима получить постоянное напряжение.

Как получить из шима постоянное напряжение, знает каждый начинающий электронщик. Всё просто, надо пропустить шим через фильтр низких частот(в простейшем случае RC цепочка) и на выходе фильтра получим постоянное напряжение, не так ли?

На самом деле, как мне кажется всё гораздо интереснее, при попытке получить из шима постоянное напряжение появляются следующие вопросы:

Как подобрать номиналы элементов фильтра?

Сгладиться ли шим полностью или останутся пульсации?

И как вообще это работает, ведь конденсатор заряжается и разряжается через один и тот же резистор и по идее если коэффециент заполнения будет меньше половины, напряжение на конденсаторе вообще будет равно нулю. Например, у нас коэффециент заполнения равен 30%, тогда 30% периода конденсатор будет заряжаться, а 70% разряжаться, через тот же резистор и в итоге на нём ничего не останется, по крайне мере можно так подумать.

Читайте так же:
Станок для переработки шин своими руками

Давайте проверим это на практике, для этого соберём схему, изображённую ниже и подключимся щупами осциллографа в точки 1 и 2, надо отметить что период шима на порядок больше постоянной времени данной цепочки.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

На осциллограмме видно, что действительно так и происходит, как быстро конденсатор зарядился также быстро и разрядился. Как же вообще получают постоянное напряжение из шима?

Единственная идея, которая напрашивается — это изменить номиналы RC фильтра, давайте на порядок увеличим значение резистора, тем самым увеличив постоянную RC цепи(теперь она будет равна периоду шима) или уменьшив частоту среза фильтра.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Ух ты, что-то начинает проясняться, у нас появилась постоянная составляющая. То есть в наши рассуждения закралась ошибка и заключается она в том, что конденсатор заряжается от 0 до 63% за время равное R*C(T), а разряжается он от 63% до 5% за время больше чем 2T , ниже графики, поясняющие это.

Как из шима получить постоянное напряжение.

На графиках видно, что скорость зарядки и разрядки конденсатора не постоянна и зависит от заряда конденсатора, это свойство и позволяет получать из шима постоянное напряжение.

Теперь, когда мы нашли ошибку в наших размышлениях давайте, проанализируем что происходило, в первом эксперименте. Известно, что полная зарядка или разрядка конденсатора происходит за время равное 5T, а зарядка до 95% и разрядка до 5% примерно за 3T. Так как постоянная времени RC цепочки(которую мы использовали как ФНЧ) была мала, то за один период шима конденсатор успевал, почти полностью зарядиться и разрядиться.

После того как мы увеличили постоянную времени цепочки, скорость его зарядки и разрядки стала разной. Например, конденсатор успел разрядиться до 63% за время х, чтобы полностью разрядиться ему надо время превышающее . Чтобы понять это можно посмотреть на графики выше.

Итак вывод, постоянная времени RC цепочки должна быть равна или больше периода шима, тогда за один период не будет происходить полный заряд-разряд конденсатора. Если же ещё на порядок увеличить постоянную времени RC цепочки, то увеличится время переходного процесса и уменьшаться пульсации. Время переходного процесса — это промежуток времени, за которое напряжение на конденсаторе изменится от 0 до некоторой постоянной величины. Данный вывод приведен для общего понимания.

Теперь примерно, понимая как вообще получают из шима постоянное напряжение, давайте перейдём к реальной задаче.
Необходимо на одном из входов ОУ формировать опорное напряжение с помощью шима и ФНЧ, логическая единица у шима составляет 3 вольта, частота шима 10KHz, допустимый уровень пульсаций 30 милливольт. Считаем, что входы ОУ ток не потребляют, в качестве ФНЧ возьмём фильтр первого порядка, реализованный на RC цепочке.

Самый простой путь — это взять RC цепочку, у которой Т на два порядка больше величины шима и посмотреть какие будут пульсаций и дальше подбирать номиналы фильтра, но это есть не что иное, как метод научного тыка, а хотелось бы всё по-честному рассчитать.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Известно, что крутизна спада у фильтра первого порядка составляет 20дб/декаду и ослабление сигнала на 40дб, соответствует увеличению частоты на две декады. (20дб/декаду — уменьшение амплитуды в 10 раз(20дб), при увеличении частоты в 10 раз(декада).

Как из шима получить постоянное напряжение.

Зная, что частота среза фильтра должна быть на две декады(в 100 раз) меньше частоты шимы, можно её рассчитать 10KHz/100 = 100Hz.

Номиналы фильтра можно подобрать пользуясь известной формулой.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

Как из шима получить постоянное напряжение.

У данного генератора импульсная система питания, которая сильно шумит, это можно видеть во втором канале, но если присмотреться, то видно, что амплитуда пульсаций на осциллограмме примерно 40 милливольт, то есть немного отличается от расчётной, но это нормально так, как шим содержит высшие гармоники, которые вносят свой вклад и спад не везде равен 20дб/декаду, это видно на ЛАЧХ. Несмотря на
некоторые допущения, мне этот расчёт показался очень простым и понятным, ведь мы с помощью простых логических размышлений и школьных формул, решили такую интересную задачу. При решении данной задачи важно понять именно физический смысл, что мы по сути на АЧХ абстрактного фильтра находим точку, которая соответствует нужному подавлению сигнала, вторая координата точки — это частота, она должна быть равна частоте шима. Таким образом мы находим одну из точек АЧХ фильтра, пользуясь этой точкой находим частоту среза, а зная её мы находим номиналы фильтра, вот и всё.

Читайте так же:
Печь для выплавки металла

Преобразование шим в напряжение

В статье речь пойдёт про расчёт простейших фильтрующих цепей для сглаживания широтно-импульсной модуляции. Что такое ШИМ, где он применяется и как его реализовать читайте в отдельной статье.

Первое, на чём следует заострить внимание — это назначение цепи, для которой вы собрались строить фильтр. Немного упрощая схемы с ШИМ можно поделить на два типа:

Фильтрация ШИМ в сигнальных цепях

Простейший фильтр нижних частот и его АЧХ.
Рис.1. Простейший фильтр нижних частот — интегрирующая RC-цепь и её АЧХ.

Основная характеристика фильтра это частота среза (на рисунке 1 обозначена угловая частота среза — ωс) — амплитуда колебаний данной данной частоты на выходе фильтра ослабляется до уровня

0.707 (-3 Дб) от входного значения. Частота среза определяется по следующей формуле:

Частота среза RC-фильтра

Тут R и С — сопротивление резистора в омах и ёмкость конденсатора в фарадах. Необходимо помнить, что для корректной работы сглаживающего фильтра постоянная времени RC-цепочки (τ = R · C) должна быть как можно меньше периода ШИМа, тогда за один период не будет происходить полный заряд-разряд конденсатора.

Следующий важный параметр, позволяющий расчитать ослабление колебаний на заданной частоте это коэффициент передачи фильтра — это отношение K = Uвых/Uвх. Для данной RC-цепочки коэффициент передачи рассчитывается следующим образом:

Коэффициент передачи RC-фильтра

Зная эти формулы и учтя постоянное падение напряжения на резисторе можно приближённо рассчитать фильтр с нужными характеристиками — например, задавшись имеющейся ёмкостью, либо необходимым уровнем пульсаций.

Калькулятор ШИМ-фильтра на RC-цепочке

Постоянная времени RC-цепи

Постоянная времени цепи (R · C) не должна быть сильно меньше периода ШИМ!

Обратите внимание — если вы хотите получать из ШИМ-сигнала сглаженный синусоидальный сигнал, необходимо чтобы частота среза фильтра была выше максимальной частоты сигнала, а значит частота ШИМ должна быть ещё выше.

Фильтрация ШИМ в силовых цепях

Фильтр нижних частот на LC-цепочке и его АЧХ.
Рис.2. Фильтр нижних частот на LC-контуре и его АЧХ.

LC-фильтр представляет из себя элементарный колебательный контур, который имеет собственную частоту резонанса, поэтому его реальная АЧХ будет несколько отличаться от АЧХ, приведённой на рисунке 2.

Поскольку речь в данной статье идёт о фильтре для силовых цепей, при расчёте фильтра нужно учитывать, что основная гармоника входящего напряжения тоже должна ослабляться фильтром, следовательно, его резонансная частота должна быть ниже частоты ШИМ.

Формула для расчёта частоты резонанса LC-контура:

Если частота резонанса контура совпадёт с частотой ШИМ, LC-контур может перейти в режим генерации, тогда на выходе может случиться конфуз, посему предлагаю вам данного недоразумения тщательно избегать. Кроме того, при проектировании данного фильтра есть ещё несколько нюансов, которые неплохо бы соблюдать для получения желаемого результата, а именно:

    Для исключения резонансных явлений на одной из высокочастотных гармонических составляющих ёмкость конденсатора желательно находить из условия равенства волнового сопротивления фильтра сопротивлению нагрузки:

Формула расчёта коэффициента передачи LC-фильтра

где n — номер гармонической составляющей входного сигнала, i — мнимая единица, ω = 2πf, L — индуктивность дросселя (Гн), C — ёмкость конденсатора (Ф), R — сопротивление нагрузки (Ом).

Из формулы очевидно, что чем выше гармоника, тем лучше она подавляется фильтром, следовательно, достаточно рассчитывать уровень только для первой гармоники.

Чтобы перейти от комплексного представления коэффициента передачи к показательному, нужно найти модуль комплексного числа. Для тех, кто (как и я) спал на парах матана в институте, напомню, модуль комплексного числа считается очень просто:

r = |Z| = (x 2 + y 2 ) 0.5

Так как у нас в формуле коэффициента дробь, просто так сходу посчитать модуль не получится и проще всего посчитать это всё, например в MathCad’е. А для тех, кому лень делать всё самим, я запилил весь расчёт в этот прекрасный калькулятор. Пользуйтесь:

Калькулятор силового ШИМ-фильтра на LC-контуре

Обратите внимание — при использовании LC-фильтра следует помнить, что из-за наличия в цепи индуктивности, на выходе могут появляться выбросы обратной полярности. Если полярность импульсов на входе не изменяется (например для изменения направления вращения двигателя) для ограничения амлитуды отрицательных выбросов параллельно конденсатору (?) можно включать диод Шоттки.

Точный и быстрый преобразователь цифрового сигнала ШИМ в аналоговое напряжение

Светодиодные драйверы MEAN WELL для систем внутреннего освещения

Широтно-импульсная модуляция (ШИМ) является распространенным методом формирования аналоговых напряжений с помощью цифровых устройств, таких, например, как микроконтроллеры или ПЛИС. В большинстве микроконтроллеров имеются специализированные периферийные блоки, предназначенные для формирования ШИМ, а для генерации сигналов ШИМ средствами ПЛИС достаточно написать лишь несколько строк RTL-кода. Эта технология исключительно проста и практична в случаях, когда требования к параметрам аналоговых сигналов не слишком строги, поскольку для ее реализации требуется всего один выход микросхемы, а количество необходимых строк программного кода, несоизмеримо меньше того, что потребовалось бы в случае использования цифро-аналогового преобразователя (ЦАП) с интерфейсом SPI или I 2 C. На Рисунке 1 приведен типичный пример приложения с цифровым выводом, выходной сигнал которого превращается в аналоговое напряжение с помощью фильтра.

Читайте так же:
Мощные диоды шоттки с малым падением напряжения
Рисунок 1.Простейший преобразователь ШИМ-аналог.

Не нужно копать очень глубоко, чтобы обнаружить бесчисленные недостатки этой схемы. 12-битный аналоговый сигнал в идеале должен иметь пульсации менее величины младшего значащего разряда, что в случае, если частота ШИМ будет равна 5 кГц, потребует фильтра нижних частот с частотой среза 1.2 Гц. Импеданс выхода аналогового напряжения, определяемый сопротивлением резистора фильтра, из-за необходимости сохранения приемлемых габаритов конденсатора может оказаться слишком большим. Таким образом, выход может работать только на высокоомную нагрузку. Наклон характеристики преобразования ШИМ в аналоговый сигнал зависит от напряжения питания микроконтроллера, возможно, неточного. Более тонкий эффект обусловлен несовпадением эффективных выходных сопротивлений цифрового вывода в противоположных логических состояниях, которые для сохранения необходимой линейности должны быть значительно меньше, чем сопротивление резистора фильтра. И, наконец, для того, чтобы выходное напряжение оставалось постоянным, сигнал ШИМ должен быть непрерывным, что может оказаться проблематичным, если потребуется перевести процессор в режим останова с низким потреблением мощности.

Этот преобразователь ШИМ-аналог лучше?

Рисунок 2 иллюстрирует попытку исправить эти недостатки. Благодаря выходному буферу появилась возможность использования в фильтре высокоомных резисторов при сохранении низкого импеданса аналогового выхода. За счет использования внешнего КМОП буфера, получающего питание от прецизионного опорного источника, повысилась точность коэффициента передачи, так как границами изменения сигнала ШИМ теперь стали земля и точное положительное напряжение. Эта схема, безусловно, работоспособна, однако требует большого количества компонентов, не позволяет сделать время установления лучше, чем 1.1 с, и не содержит никаких механизмов, с помощью которых было бы возможно «удерживать» аналоговое напряжение при отключенном сигнале ШИМ.

Рисунок 2.Усовершенствованный преобразователь ШИМ-аналог.

Усовершенствованный преобразователь ШИМ-аналог

Микросхемы LTC2644 и LTC2645 представляют собой сдвоенный и счетверенный преобразователи ШИМ-напряжение на основе ЦАП, содержащие внутренний источник опорного напряжения со стабильностью 10 ppm/°C и обеспечивающие 8-, 10- или 12-разрядную точность преобразования сигналов ШИМ. LTC2644 и LTC2645 снимают все перечисленные проблемы прямым измерением коэффициента заполнения входного сигнала ШИМ и отправкой соответствующего 8-, 10- или 12-разрядного кода на высокоточный ЦАП по каждому нарастающему фронту (Рисунок 3).

Рисунок 3.4-канальный преобразователь ШИМ-аналог.

Внутренний источник опорного напряжения 1.25 В определяет полную шкалу выходных напряжений 2.5 В. Иное значение напряжения полной шкалы можно получить, используя внешний источник опорного напряжения. Для установки уровня входного цифрового сигнала используется отдельный вывод IOVCC, позволяющий напрямую подключать к микросхемам как ПЛИС с напряжением питания 1.8 В, так и 5-вольтовые микроконтроллеры, а также устройства с любым другим напряжением питания, лежащим внутри этого диапазона. В техническом описании гарантируются отличные точностные характеристики:

  • напряжение смещения 5 мВ,
  • максимальная ошибка усиления 0.8%,
  • максимальная интегральная нелинейность 2.5 единицы младшего разряда (12 бит).

Время установления, отсчитанное от переднего фронта входного сигнала ШИМ до момента, когда уровень выходного напряжения достигает точности 0.024% (веса единицы младшего разряда 12-битного ЦАП), составляет 8 мкс. Для 12-битных версий микросхем диапазон частот входных сигналов ШИМ составляет 30 Гц … 6.25 кГц.

Многообразие режимов выхода

На Рисунке 4 показано типичное приложение с подстройкой питания, основанное на использовании еще одной уникальной функции LTC2644. Подключение вывода IDLSEL к напряжению высокого уровня устанавливает режим выборки/хранения, в котором выходы при включении схемы будут находиться в высокоимпедансном состоянии (без подстройки), а непрерывный входной сигнал высокого уровня переведет его в режим постоянного удержания, в то время как непрерывный сигнал низкого уровня установит состояние высокого импеданса. Таким образом, при включении схемы можно выполнить однократную подстройку напряжения питания, подав на вход напряжение высокого уровня после однократного импульса ШИМ. Низким уровнем на входе ШИМ схему можно аккуратно вывести из режима подстройки. Соединением выводов IDLSEL и GND задается «прозрачный режим», в котором продолжительное удержание высокого уровня на входе устанавливает на выходе полную шкалу напряжений, а удержание низкого уровня – нулевую шкалу.

Рисунок 4.Приложение с подстройкой питания.

Заключение

Не отчаивайтесь, если вам придется лицом к лицу столкнуться с ограничениями стандартных технологий преобразования ШИМ в аналоговое напряжение. LTC2645 делает возможным точное и быстрое получение аналоговых напряжений из выходных сигналов ШИМ при небольшом числе используемых компонентов и простом программном коде.

Читайте так же:
Приспособление заточного станка сзш 1 в которое

Аналоговый вывод

Несмотря на большую универсальность, возможности аналогового вывода у микроконтроллеров семейства tiny/mega ограничены. В их составе отсутствует цифро-аналоговый преобразователь (ЦАП), который, однако, имеется в ряде моделей специализированного для этих целей семейства 90PWM. Преобразовать цифровой код в аналоговую величину в общем случае можно с помощью простой схемы приведенной на рис.1.

Простой 8-разрядный ЦАП
Рис.1 Простой 8-разрядный ЦАП

Делитель напряжения, состоящий из набора резисторов R1…R8, подключен к порту D микроконтроллера. Номиналов каждого последующего сопротивления должен быть в 2 раза больше предыдущего
RN = 2 N-1 *R,
где N – индекс, R – опорный номинал.

Если, например, в качестве R выбрать значение 200Ом, то потребуется последовательность сопротивлений R1=200Ом, R2=400Ом, R3=400Ом,…, R6=6.4кОм, R6=12.8кОм, R6=25.6кОм. Выходное напряжение
UO = NPORTD*VCC/256,
где NPORTD – логическое значение регистра PORTD.

Теоретически получим 2 8 шагов регулировки, что будет соответствовать 8-разрядному ЦАП. Но на практике перекрыть весь диапазон 0…V­СС никогда не удастся, и всегда будут иметься зоны “замирания” напряжения из-за сложности подбора номиналов R1…R8. Шаг установки VCC/256 по этой же причине также не будет постоянной величиной. Для большей точности работы ЦАП на рис.1 требуется высокоимпедансная нагрузка.

Формирование ШИМ-сигнала на линии ОС2 при работе таймера-счетчика 2 в режиме Fast PWM
Рис.2 Формирование ШИМ-сигнала на линии ОС2 при работе таймера-счетчика 2 в режиме Fast PWM

Другим более естественным для AVR способом формирования аналоговых сигналов является использование широтно-импульсной модуляции (ШИМ). Способность аппаратно генерировать импульсы переменной длительности и частоты имеется у большинства моделей tiny и у всех без исключения моделей старшего семейства. Преобразование ШИМ–сигнала в постоянное напряжение может быть легко произведено с помощью ФНЧ. На рис.2, например, показано, как в этих целях можно использовать вывод OC2 микроконтроллера ATmega8. В подобных случаях 8-разрядный таймер-счетчик 2, как правило, работает в режиме Fast PWM(Fast Pulse Wide Modulation). Счетный регистр TCNT2 при этом инкрементируется с каждым приходящим импульсом до тех пор, пока не достигнет значения 0xFF, после чего счет продолжается с нуля. Если функции вывода OC2 настроены должным образом, то каждый раз, когда содержимое TCNT2 сравнивается со значением, записанным в регистре OCR2, на выводе OC2 устанавливается высокий уровень напряжения, а при переполнении TCNT2 линия OC2 сбрасывается на нуль. Таким образом, на выводе получаем ШИМ-сигнал с частотой
FOC2 = Fclk/(256*N),
где Fclk – частота тактового генератора, N-коэффициент деления предделителя частоты таймера-счетчика 2.

Коэффициент заполнения импульсов
αOC2 = τ/T = OCR2/256,
где τ – длительность импульса , T – период импульса.

Постоянная составляющая напряжения после ФНЧ будет пропорциональна коэффициенту заполнения αOC2
UO = αOC2*VCC = OCR2*VCC/256,
где VCC – напряжение питания микроконтроллера.

Изменяя значение OCR2, можно программным способом регулировать UO с 8-разрядной точностью. Еще больше возможностей можно получить, если в подобных целях использовать ШИМ–выводы OC1A, OC1B. Разрешающая способность в этом случае может быть доведена до 16 битов за счет использования 2-байтовых регистров совпадения OCR1AH:OCR1AL и OCR1BH:OCR1BL.

Частота среза ФНЧ должна быть во много раз ниже FOC2. Поэтому саму частоту FOC2, если это возможно, желательно выбирать повыше для того, чтобы можно было уменьшить постоянную времени фильтра (увеличить скорость установления напряжения после фильтра).

Управление с помощью ШИМ
Рис.3 Управление с помощью ШИМ
а — при регулировке напряжения
б — при регулировке тока

На рис.3 приведено два примера, в которых управляющий ШИМ–сигнал используется для регулировки напряжения (рис.3а) и тока (рис.3б) с помощью мощных полевых транзисторов с изолированным затвором.
В первом случае напряжение на сопротивлении нагрузки UL будет:
UL = [R2/(R1+R2)] * [(R3+R4)/R4] * VCC.

Если выбрать R1/R2 = R3/R4, то UL будет в точности следовать за средним значением напряжения сформированного на выводе OC2. Для надежного запирания p-канального транзистора VT1 усилитель DA1 должен обеспечивать размах напряжения на выходе такой же, как и у источника питания (rail-to-rail).

При управлении током напряжение ошибки снимается с шунта R3 и подается на инвертирующий вход –IN усилителя. Влияние ООС приводит к равенству напряжений
U+IN = U–IN = IL*R3,
где U+IN, U-IN – напряжение на не инвертирующем и инвертирующем входе DA1 соответственно, IL — ток в нагрузке.

Для схемы на рис.3б ток в нагрузке будет равен:
IL = U–IN/R3 = [R2/((R1+R2)*R3)] * VCC.

C обозначенными на рис.3б номиналами R1…R3 и VCC=5 В, получим 2-амперный регулятор тока.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector