Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение прочности кирпича

Определение прочности кирпича

Марка кирпича по прочности – одна из важнейших характеристик изделия, определяющая область применения кирпича. При определении прочности кирпича в зависимости от способа измерения разделяют:
— определение предела прочности при сжатии;
— определение предела прочности при изгибе (измеряется только у клинкерного, рядового и утолщенного кирпича).
На основании, определенного предела прочности изделию присваивается марка ( М100, М125, М150, М200, М250, М300), для камня керамического к вышеперечисленным добавляются марки М25, М35, М50, М75, а для клинкерного кирпича марка изделия выбирается из ряда М300, М400, М500, М600, М800, М1000.

Порядок измерения предела прочности при сжатии и изгибе подробно приведен в ГОСТ Р 58527-2019 и ГОСТ 530-2012. Остановимся на тонкостях, которые необходимо знать.

  1. Для определения марки по прочности испытания проводят на 5 образцах камня керамического или на 15 (10 сжатие + 5 изгиб) образцах рядового и утолщенного кирпича.
  2. Кирпич и камень испытывают в воздушно-сухом состоянии, т.е изделие перед испытанием сушат в сушильном шкафу до постоянного веса .
  3. При испытании на определение предела прочности при изгибе ( для рядового и утолщенного кирпича) в качестве образца используют один кирпич.
  4. При испытании на определении предела прочности при сжатии кирпича используют составной образец из двух целых кирпичей, уложенных «постелями» друг на друга.
  5. При испытании камня керамического в качестве образца используют один целый камень.
  6. Опорные поверхности выравнивают шлифованием, при этом отклонение от плоскостности опорных поверхностей испытуемых образцов не должно превышать 0,1 мм на каждые 100 мм длины, а непараллельность опорных поверхностей испытуемых образцов (разность значений высоты, измеренной по четырем вертикальным ребрам) должна быть не более 2 мм.

На данном моменте необходима следующая оговорка, – ГОСТ 530-2012 (п 7.10.1) допускает при проведении приемо-сдаточных испытаний применять иные способы выравнивания опорных поверхностей образцов (технический войлок, резинотканевые пластины, выравнивание цементным раствором) при условии наличия корреляционной связи между результатами, полученными при разных способах выравнивания. При этом корреляционный коэффициент определяют по отношению к выравниванию опорных поверхностей шлифованием по Приложению В ГОСТ Р 58527-2019 не реже чем раз в год и оформляют соответствующим протоколом.

  1. Непосредственно для определения предела прочности при сжатии образец устанавливают в центре опорной плиты машины для испытаний на сжатие, совмещая геометрические оси образца и плиты, и прижимают верхней плитой испытательной машины. При испытаниях нагрузка на образец должна возрастать так, чтобы разрушение образца произошло не ранее чем через 1 мин. Значение разрушающей нагрузки регистрируют. Предел прочности при сжатии Rсж (МПа) определяют по формуле:

Rсж=F/S

где, F— разрушающая нагрузка (Н);
S – площадь поперечного сечения образца (мм2)

Предел прочности при сжатии образцов вычисляют с точностью до 0,1 МПа

(При вычислении предела прочности при сжатии образцов из двух целых кирпичей толщиной 88 мм результаты испытаний умножают на коэффициент 1,2 ).

  1. При определении предела прочности на изгиб образец устанавливают на двух опорах пресса. Нагрузку прикладывают в середине пролета и равномерно распределяют по ширине образца согласно чертежу. Нагрузка на образец должна возрастать непрерывно со скоростью, обеспечивающей его разрушение через 20 — 60 с после начала испытаний.

изгиб

Схема испытания кирпича на изгиб

Предел прочности образца при изгибе Rизг (МПа) вычисляют по формуле

Rизг = (3xFxL)/(2xBxH 2 )

где, F— разрушающая нагрузка, установленная при испытании образца, Н ;
L — расстояние между осями опор, мм ;
B — ширина образца посередине, мм;
H — высота образца посередине, мм.

3.3. Определение предела прочности при сжатии

Прочность строительных материалов характеризуется пределом прочности. Пределом прочности называется напряжение, соответствующее нагрузке, вызывающей разрушение образца материала. Предел прочности при сжатии для различных материалов колеблется от 0,5 до 1000 МПа и более и определяется по формуле:

,

где Рразр – разрушающая сжимающая сила, кгс; F – первоначальная площадь образца, см 2 .

Читайте так же:
Самый лучший краскопульт электрический

Различают разрушающие и неразрушающие методы определения прочности строительных материалов.

3.3.1 Разрушающие методы определения прочности строительных материалов.

Разрушающим методом определение прочности при сжатии является испытание образцов на механических или гидравлических прессах (рис. 3.3). Для этой цели применяют образцы в форме кубов, цилиндров, призм. Учитывая, что на показания пресса оказывают влияния форма, размеры образца, характер его поверхности, скорость приложения нагрузки и другие факторы, необходимо придерживаться стандартных метолов испытания, установленных для данного материала. Мощность пресса должна не менее чем в 1,25 раза превышать разрушающую нагрузку на образец. Недостатки метода: громоздкость пресса, необходимость силовой электроэнергии, разрушение образцов, а не материала продукции (между ними может быть существенная разница).

Приборы и материалы: пресс гидравлический, образец строительного материала, линейка мерная.

Образцы перед испытанием осматривают и измеряют. Они должны иметь правильную геометрическую форму и параллельные противоположные грани. Рабочая площадь сечения образца F, см 2 , определяется как среднее арифметическое площадей обеих опорных граней с округлением до 0,1 см 2 .

Образец устанавливают одной из ранее отмеченных граней на нижнюю опорную плиту пресса так, чтобы оси образца и плиты совпадали. Возрастание нагрузки на образец должно происходить плавно и со скоростью, предусмотренной стандартом применительно к типу пресса и размерами образцов. Количество образцов должно быть не менее трех. Полученные результаты заносят в табл. 3.3.

3.3.1.а. Определение коэффициента размягчения

Коэффициентом размягчения называется отношение прочности насыщенного водой материала к его прочности в сухом состоянии. Этот коэффициент характеризует водостойкость материала и изменяется в пределах 0…1. Для строительных конструкций, находящихся в воде или эксплуатирующихся в местах постоянного увлажнения, нельзя применять материалы с коэффициентом размягчения менее 0,8, для стеновых материалов – менее 0,6.

,

где Rнас, Rсух – предел прочности при сжатии образцов соответственно в насыщенном водой и сухом состоянии, МПа.

3.3.2. Неразрушающие методы определения прочности строительных материалов.

Неразрушающие методы оценки прочности строительных материалов подразделяются на механические и физические. Они основаны на зависимости прочности материала от какой-либо другой физико-механической характеристики материала .

3.3.2.а. Механические неразрушающие методы определения прочности материала.

Механические неразрушающие методы основаны на измерениях:

а) величины отпечатка штампов на бетоне, получаемых от вдавливания штампов с помощью специальных приборов (штамп Хайдукова Г., молоток Физделя И.А. и др.);

б) отношения величины отпечатков, полученных при вдавливании ударника в поверхность бетона и отпечатка на эталоне (молоток Макарова К.П., Польди и др.);

в) величины упругого отскока (пистолет Борового С.Н., склерометр Шмидта);

г) прочности бетона методом стрельбы (метод Скрамтаева В.Г. – стрельба из нагана, строительно-монтажный пистолет СМП);

д) усилия отрыва стержней, дисков из материала (прибор Вольфа).

Приборы и материалы: эталонный молоток Кашкарова К.П. (рис.3.4.); угловой масштаб; бетонные образцы.

Прочность определяют эталонным молотком Кашкарова К.П. Молоток состоит из головки, корпуса с ручкой, стакана, пружины и шарика. В станке имеются отверстия, через которые вставляются эталонные стержни из стали класса А-І.

Бетонный образец устанавливают на твердое основание испытываемой гранью вверх. В молоток вставляют стержень и несколькими ударами (5-6 раз) средней силы на образце делают круглые отпечатки. Каждый следующий удар производят через 20мм. Угловым масштабом измеряют с точностью до 0,1мм диаметры отпечатков на бетоне dб и на эталонном стержне (dэ). определяют среднее значение dб и dэ, по которому вычисляют отношение dб /dэ. пользуясь тарировочной кривой (рис. 3.5), определяют прочность бетона. Результаты заносят в табл. 3.3.

Преимущество метода – простота, портативность прибора, возможность определения прочности непосредственно в конструкциях. Недостаток метода – возможность определения прочности только в поверхностном слое.

3.3.2.б. Физические неразрушающие методы определения прочности материалов.

К физическим методам испытания прочности бетона относятся ультразвуковой импульсный, резонансный и радиометрический методы, позволяющие судить о качестве испытуемого бетона не только по его поверхностному слою, но и по внутренней структуре.

Читайте так же:
Обороты шпинделя при фрезеровании

При резонансном методе свойства бетона оценивают по динамическому модулю упругости и логарифмическому декременту затухания.

Радиометрический метод определения основных физико-механических свойств основан на законе ослабления потока лучей после их взаимодействия с испытуемой средой.

При ультразвуковом импульсном методе о свойствах бетона судят по скорости распространения ультразвукового импульса и интенсивности его затухания.

В последнее время также получили распространения приборы, основанные на измерении магнитной проницаемости, диэлектрической постоянной и характеристик электропроводности.

Подготовка прибора к работе:

переключатели дискретно-цифрового отсчета «х10», «хІх», «х0,1» установить в «0» положение, тумблер «+200» в верхнее положение, тумблер «Задержка» — в любое положение.

Включить тумблер сетевого питания, при этом должна загораться индикаторная лампа;

Смазать торцы датчика приемника и излучателя техническим вазелином и прижать их друг к другу, при этом должна загореться индикаторная лампа включения прибора. Через 3…10 с должен начать работать излучатель, что сопровождается появлением характерного звука частоты 30…40 Гц, при этом загорается индикаторная лампа;

Придерживая пальцами торцы датчиков прибора, раздвинуть их. Индикаторная лампа должна гореть, пока расстояние между торцами датчиков будет не менее 60…70мм;

Проверить коррекцию приборной поправки. Для этого тумблер «+200» поставить в нижнее положение: прижать друг к другу предварительно смазанные торцевые поверхности датчиков и затем вращать ручку «Коррекция» по часовой стрелке до момента загорания индикаторной лампы.

Работа с приборами:

прижать торцы датчиков к исследуемому материалу с противоположных боковых граней;

установить тумблер «+200» в верхнее положение, если при этом загорится индикаторная лампа, тумблер возвращается в нижнее положение;

переключатель дискретного отсчета «+10» поворачивают по часовой стрелке до момента загорания индикаторной лампы. При загорании индикаторной лампы ручку с множителем «+10» повернуть против часовой стрелки на одно положение, лампа должна погаснуть;

переключатель дискретного отсчета «хІх» вращают по часовой стрелке до момента загорания индикаторной лампы. При загорании индикаторной лампы ручку поворачивают против часовой стрелки на одно положение, лампа должна погаснуть;

переключатель дискретного отсчета «х0,1» вращают по часовой стрелке до момента загорания индикаторной лампы. На этом измерение заканчивают. Снимают отсчет показания тумблера и переключатель дискретного отсчета (время измеряют в микросекундах).

Определяют скорость прохождения ультразвука через образец

,

где V – скорость распространения ультразвука, м/с; l – толщина образца, мм; t – время распространения ультразвука, мкс.

По тарировочной кривой определяют прочность материала (рис. 3.7) и данные помещают в табл. 3.3.

По данным табл. 3.3 можно сделать вывод о целесообразности применения и согласования разрушающих и неразрушающих методов определения прочности строительных материалов.

Ультразвуковой прибор «Бетон – 3М» есть простым и надежным в эксплуатации, но используют и более современные аппараты, такие как «Бетон – 5» и «УК – 10ПМ».

Ход работы на ультразвуковом приборе «Бетон – 5».

Смазать торцы датчика и излучателя техническим вазелином и приложить их к исследуемому образцу с противоположных боковых граней соответственно.

Установить тумблер «+200» в верхнее положение. При появлении сигнала индикатора вернуть тумблер в нижнее положение. (При отсутствии сигнала тумблер остановить в верхнем положении). Переключатель с дискретностью 200мкс повернуть по часовой стрелке до момента появления сигнала. При появлении сигнала переключатель повернуть по часовой стрелке на одно положение. Стрелка индикатора при этом должна повернуться в положение «0». Переключатель с дискретностью отсчета 20мкс повернуть по часовой стрелке до момента появления сигнала. При его появлении ручку переключателя повернуть против часовой стрелки на одно положение. Стрелка индикатора при этом должна стать в положение «0». Переключатель с дискретностью отсчета 2 мкс повернуть по часовой стрелке до момента появления сигнала. При появлении индикации ручку переключателя повернуть против часовой стрелки на одно положение, при этом сигнал индикатора должен отсутствовать.

Читайте так же:
Схема проводки двойного выключателя

Ручку «коррекции» повернуть по часовой стрелке до появления сигнала, что соответствует дискретности отсчета 0,1 мкс. Снять отсчет показаний переключателей дискретного отсчета и «коррекции».

После работы все ручки и тумблеры вернуть в нулевые положения Значение времени прохождения ультразвуковой волны через массив образца подставляем в формулу скорости, рассчитываем ее и по графику зависимости V-Rсж определяем прочность образца.

Все результаты заносим в табл. 3.3.

ПОРЯДОК РАБОТЫ УЛЬТРАЗВУКОВОГО

ПРИБОРА УК-10 ИМ

Установить искательные головки через слой контактной смазки соответственно на образце материала. На экране электронно-лучевой трубки І (ЭТЛ) должно появиться изображение принятого сигнала УЗК в виде волны.

Вращая влево от себя ручку регулировки усиления сигнала 2, перемещаем начало волны до её совмещения с началом линии развертки. На цифропоказывающей панели 3 – «режим отсчета» фиксируем время прохождения ультразвуковой волны через массив образца в МКС. Значение времени подставляем в формулу скорости и по тарировочной кривой определяем прочность образца.

ТЕМЫ ДЛЯ САМОСТОЯТЕЛЬНЫХ ИССЛЕДОВАНИЙ

Изучение зависимости водопоглощения материала от вида и характера пористости.

Изучение зависимости прочности материалов от вида и характера пористости.

Изучение зависимости средней плотности материалов от их пористости.

Исследование зависимости для эталонного молотка на материалах различной плотности.

Исследование зависимости на материалах различной плотности, прочности, при различной температуре.

Техническая механика

В результате проведения механических испытаний устанавливают предельные напряжения, при которых происходит нарушение работы или разрушение деталей конструкции.
Предельным напряжением при статической нагрузке для пластичных материалов является предел текучести, для хрупких — предел прочности.
Для обеспечения прочности деталей необходимо, чтобы возникающие в них в процессе эксплуатации наибольшие напряжения были меньше предельных.

Отношение предельного напряжения к напряжению, возникающему в процессе работы детали, называют коэффициентом запаса прочности и обозначают буквой s :

где σ = N / А – реальное напряжение, возникающее в элементе конструкции.

Недостаточный коэффициент запаса прочности может привести к потере работоспособности конструкции, а избыточный (слишком высокий) — к перерасходу материала и утяжелению конструкции. Минимально необходимый коэффициент запаса прочности называют допускаемым , и обозначают [s] .
Отношение предельного напряжения к допускаемому запасу прочности называют допускаемым напряжением , и обозначают [σ] :

Условие прочности в деталях и конструкциях заключается в том, что наибольшее возникающее в ней напряжение (рабочее напряжение) не должно превышать допускаемого:

Если допускаемые напряжения при растяжении и сжатии различны, их обозначают [σр] и [σс] .

Расчетная формула при растяжении и сжатии имеет вид:

и читается следующим образом: нормальное напряжение в опасном сечении, вычисленное по формуле σ = N /А , не должно превышать допустимое.

На практике расчеты на прочность проводят для решения задач:

— проектный расчет , при котором определяются минимальные размеры опасного сечения;
— проверочный расчет , при котором определяется рабочее напряжение и сравнивается с предельно допустимым;
— определение допускаемой нагрузки при заданных размерах опасного сечения.

Растяжение под действием собственного веса

решение задач по сопромату

Если ось бруса вертикальна, то его собственный вес вызывает деформацию растяжения или сжатия.
Рассмотрим брус постоянного сечения весом G , длиной l , закрепленный верхним концом и нагруженный только собственным весом G (рис.1) .
Для определения напряжений в поперечном сечении на переменном расстоянии z от нижнего конца применим метод сечений.
Рассмотрим равновесие нижней части бруса и составим уравнение равновесия:

где γ — удельный вес материала бруса, А – площадь его поперечного сечения, z — длина части бруса от свободного конца до рассматриваемого сечения.

Напряжения, возникающие в сечениях бруса, нагруженного собственным весом, определяются по формуле:

т. е. для нагруженного собственным весом бруса нормальное напряжение не зависит от площади поперечного сечения . Очевидно, что опасное сечение будет находиться в заделке:

Эпюра распределения напряжений вдоль оси бруса представляет собой треугольник.
Если требуется определить максимальную длину бруса, нагруженного собственным весом, используют расчет по предельному допустимому напряжению в сечении:

Читайте так же:
Редукционный клапан что это

Статически неопределимые задачи

Иногда в практике расчета конструкций требуется определить неизвестные силовые факторы (например, реакции связей или внутренние силы), при этом количество неизвестных силовых факторов превышает количество возможных уравнений равновесия для данной конструкции, и расчет произвести рассмотренными ранее способами не представляется возможным.

Задачи на расчет конструкций, в которых внутренние силовые факторы не могут быть определены с помощью одних лишь уравнений равновесия статики, называют статически неопределимыми. Подобные задачи нередко встречаются при расчете конструкций, подверженных температурным деформациям.
Для решения таких задач помимо уравнений равновесия составляют уравнение перемещений или деформаций.

статически неопределимые задачи

Рассмотрим невесомый стержень постоянного сечения площадью А , длиной l , жестко защемленный по концам (см. рис. 2) .
При нагревании в стержне возникают температурные напряжения сжатия.
Попробуем определить эти напряжения.

Составим для стержня уравнение равновесия:

откуда следует, что реакции RС и RВ равны между собой, а применив метод сечений установим, что продольная сила N в сечениях стержня равна неизвестным реакциям:

Составим дополнительное уравнение, для чего мысленно отбросим правую заделку и заменим ее реакцией RВ , тогда дополнительное уравнение деформации будет иметь вид:

т. е. температурное удлинение стержня равно его укорочению под действием реакции RB , так как связи предполагаются абсолютно жесткими.

Температурное удлинение стержня определяется по формуле: Δlt = αtl , где α — коэффициент линейного расширения стержня.

Укорочение стержня под действием реакции: ΔlСВ = RB l / (EА) .

Приравняв правые части равенств, получим:

Температурные напряжения в реальных конструкциях могут достигать значительных величин. Чтобы исключить их отрицательное влияние на прочность конструкций, прибегают к различным методам. Мосты, например, закрепляют лишь на одном конце (на одном берегу), а второй конец оставляют подвижным.
В длинных трубопроводах, подверженных температурным напряжениям, делают компенсирующие карманы, петли и т. д.

Предел прочности при сжатии формула

Величину напряжения в растянутом или сжатом стержне обычно принимают за основной критерий для суждения о прочности той конструкции, элементом которой служит данный стержень. Поэтому расчет фермы, например, сводится к тому, чтобы определить усилия во всех элементах и, зная площади сечений, найти напряжения по формуле

Величину действующего напряжения сравнивают с так называемым допускаемым напряжением, которое принято обозначать буквой а в прямых скобках; условие обеспечения прочности будет

Допускаемое напряжение выбирается в зависимости от материала и условий службы данного сооружения. Если речь идет о пластическом материале, например стали, то, очевидно, допускаемое напряжение не должно превышать предела текучести. В то же время допускаемое напряжение нельзя принимать равным пределу текучести, необходимо иметь некоторый запас прочности на случай перегрузок в процессе эксплуатации, неточного изготовления стержня (сечение меньше, чем предусмотрено чертежом), отклонения свойств примененного материала от тех свойств, которые установлены при испытании образца, и так далее. Поэтому для пластических материалов принимают:

Здесь — коэффициент запаса прочности по отношению к пределу текучести; этот коэффициент всегда больше, чем единица. В строительных металлических конструкциях, например, обычно .

Хрупкие материалы, такие как чугун, бетон, естественные и искусственные камни и другие, не обнаруживают заметных остаточных деформаций, они разрушаются сразу, лишь только напряжение достигнет величины так называемого предела прочности или временного сопротивления . Для таких материалов

Здесь — запас прочности по отношению к временному сопротивлению.

Вообще, если принять условно за разрушающее напряжение то напряжение, при котором становится невозможным выполнение конструктивной функции изделия, то допускаемое напряжение есть результат деления разрушающего напряжения на коэффициент запаса прочности.

Вопросу о рациональном выборе коэффициента запаса прочности посвящена обширная литература. Важность его чрезвычайно велика, так так снижение коэффициента запаса означает экономию материала и расширение технических возможностей. Мы вернемся к этому вопросу впоследствии, а пока заметим, что для строительных конструкций нормы допускаемых напряжений узаконены и являются обязательными при всяком строительном проектировании.

Читайте так же:
Станки своими руками чертежи бесплатно

В машиностроении, вследствие большого разнообразия применяемых материалов и типов нагрузки, узаконенные общеобязательные нормы отсутствуют, однако отдельные ведомства, крупные заводы и проектные организации обычно имеют свои нормы допускаемых напряжений, которые вырабатываются с учетом производственного опыта.

Если допускаемое напряжение известно, то расчет на прочность сводится к обеспечению выполнения неравенств:

Заметим, что расчет на прочность при сжатии по приводимой формуле действителен только для коротких стержней; желая рассчитывать по этой формуле длинные стержни, нужно значительно уменьшать величину допускаемого напряжения (см. гл. XII, § 142).

Определение предела прочности при изгибе

Прочность — свойство твердого тела сопротивляться воздействию внешних сил. Обычно прочность тела характеризуется величиной разрушающих нагрузок при сжатии, растяжении, изгибе, кручении и т. д. Предел прочности — это отношение наибольшей нагрузки до разрушения к первоначальной площади поперечного сечения образца. Прочность твердого сплава — одно из основных его свойств. Учитывая, что изделия из твердого сплава в большинстве своем подвергаются воздействию изгибающих нагрузок, предел прочности при изгибе является основной его характеристикой. Предел прочности при изгибе находится в обратной зависимости от твердости и увеличивается с возрастанием процентного содержания цементирующего металла (кобальта). Таким образом, на прочность при изгибе металлокерамических твердых сплавов решающее влияние оказывают химический состав сплава, а также величина зерен карбидов и толщина слоев цементирующего металла (кобальта). Титановольфрамовые сплавы по сравнению с вольфрамовыми являются менее прочными, так как карбид титана более хрупок, чем карбид вольфрама.

Большое значение для предела прочности при изгибе имеет величина прослоек цементрующей (кобальтовой) фазы, так как чем толще эта прослойка, тем меньше местные напряжения и больше прочность. С уменьшением прослоек цементирующей фазы уменьшается прочность сплава. Толщина прослоек в свою очередь зависит от химического состава сплава и величины зерен карбидной фазы. Толщина прослоек увеличивается с увеличением содержания цементирующей фазы в сплаве и зерна карбидной составляющей.

Для определения предела прочности при поперечном изгибе образцов твердых сплавов применяют метод разрушения свободно лежащего на двух опорах образца одной сосредоточенной силой. При данном виде испытаний образец твердого сплава свободно лежит на двух опорах, а в центре образца приложена статическая нагрузка.

Предел прочности при изгибе сосредоточенной нагрузкой рассчитывают по формуле

Определение предела прочности при изгибе

где M = Pl/4 — максимальный изгибающий момент, кГ*мм2;

W = bh2/6 момент сопротивления образца прямоугольного сечения, мм3;

P — разрушающая нагрузка, кГ;

b — ширина образца, мм;

h — высота образца, мм;

l — расстояние между опорами, мм.

Испытания на изгиб образцов проводят на универсальных испытательных машинах мощностью 4—5 т. На них имеется специальное приспособление для установки образцов со сменными твердосплавными опорами диаметром 5—6 мм, изготовленными из твердого сплава ВК8, ВК15 или ВК20. Поверхность опор шлифуют до 6 -7 го класса чистоты. Расстояние между опорами должно составлять 30±0,5 мм.

Испытание на изгиб проводят на образцах в форме правильного бруска квадратного сечения размером 5±0,2 * 5±0,2 * 35±1 мм. Образцы готовят в одногнездных прессформах, на образце указывают сторону давящего пуансона

На прессованных образцах необходимо снять заусенцы. Поверхность образцов после спекания не шлифуют. Скорость нагружения при испытании должна быть постоянной в пределах 4—10 мм/мин. Испытанию подвергают 20 образцов каждой партии смеси.

В процессе испытаний необходимо соблюдать следующую последовательность. Вначале измеряют ширину и высоту посередине образца индикатором часового типа или микрометром с точностью до 0,01 мм, затем образцы устанавливают на опорах так, чтобы к стороне приложения усилия при их прессовании прикладывалась разрушающая сила. После этого прикладывают нагрузку к середине образца через вертикальный пуансон приспособления. Нагрузка должна быть не мгновенной, а постепенно возрастающей. Расстояние между местом приложения силы и серединой пролета не должно превышать ±0,5 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector