Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчетные формулы основных параметров трансформаторов

Расчетные формулы основных параметров трансформаторов

Представляю вашему вниманию таблицу с расчетными формулами для определения основных параметров силовых трансформаторов, а также таблицу коэффициента изменения потерь kн.п. в трансформаторах.

Таблица 1 – Расчетные формулы для определения основных параметров трансформаторов

Формула по определению токов обмоток

Формула по определению коэффициента трансформации трансформатора

Формула по приведению величин вторичной обмотки к первичной трансформатора

Сопротивление короткого замыкания

Активные потери мощности в трансформаторе при нагрузке

Приведенные активные потери мощности в трансформаторе при нагрузке

Напряжение КЗ

Мощность и ток КЗ трансформатора

Число витков первичной обмотки

Активное и реактивное сопротивление двухобмоточного трансформатора

Падение напряжения в обмотках трансформатора при нагрузке

Потери напряжения при пуске асинхронного короткозамкнутого двигателя (приближенно)

КПД трансформатора

Коэффициент загрузки

Исходные данные, которые приводятся в паспорте (шильдике) на трансформатор:

  • Потери холостого хода ∆Рх, кВт;
  • Потери короткого замыкания ∆Pк, кВт;
  • Напряжения короткого замыкания Uк, %;
  • Ток холостого хода Iхх,%.

Таблица 2 – Коэффициент изменения потерь в трансформаторах

Таблица 2 – Коэффициент изменения потерь в трансформаторах

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Пример выбора сечения кабеля для электродвигателя 380 В

Требуется определить сечения кабеля в сети 0,4 кВ для питания электродвигателя типа АИР200М2 мощностью 37.

Расчетные формулы основных параметров асинхронных двигателей

В таблице 1 представлены расчетные формулы для определения основных параметров асинхронных.

Определение сопротивления токоограничивающего ректора 6-10 кВ

Основная цель токоограничивающего реактора (далее реактор)– это ограничение тока к.з. за реактором, при.

Расчет электрических нагрузок ИТП по форме Ф636-92

Представляю вашему вниманию таблицу расчета электрических нагрузок для индивидуального теплового.

Расчет осветительной сети при двухстороннем питании

В данном примере требуется определить максимальные потери напряжения в нормальном и аварийном режимах в.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

КПД трансформатора

При работе в трансформаторе возникают потери энергии. Коэффициентом полезного действия трансформатора (КПД) называют отношение отдаваемой мощности Р2 к мощности Р1 поступающей в первичную обмотку:

η = P2/P1 = (U2I2 cos φ2)/(U1I1 cos φ1)

где ΔР — суммарные потери в трансформаторе.

Высокие значения КПД трансформаторов не позволяют определять его с достаточной степенью точности путем непосредственного измерения мощностей Р1 и Р2, поэтому его вычисляют косвенным методом по значению потерь мощности.

Рис. 2.38. Энергетическая диаграмма трансформатора

Процесс преобразования энергии в трансформаторе характеризует энергетическая диаграмма (рис. 2.38). При передаче энергии из первичной обмотки во вторичную возникают электрические потери мощности в активных сопротивлениях первичной и вторичной обмоток ΔРэл1 и ΔРзл2, а также магнитные потери в стали магнитопровода ΔРм (от вихревых токов и гистерезиса). Поэтому

Р2 = Р1 — ΔРэл1 — ΔРэл2 — ΔРм (2.50)

и формулу (2.49) можно представить в виде

Величину Рэм = Р1 — ΔРэл1 — ΔРм, поступающую во вторичную обмотку, называютвнутренней электромагнитной мощностью трансформатора. Она определяет габаритные размеры и массу трансформатора.

Определение потерь мощности. Согласно требованиям ГОСТа потери мощности в трансформаторе определяют по данным опытов холостого хода и короткого замыкания. Полу­чаемый при этом результат имеет высокую точность, так как при указанных опытах трансформатор не отдает мощность нагрузке. Следовательно, вся мощность, поступающая в первичную обмотку, расходуется на компенсацию имеющихся в нем потерь.
При опыте холостого хода ток I0 невелик и электрическими потерями мощности в первичной обмотке можно пренебречь. В то же время магнитный поток практически равен потоку при нагрузке, так как его величина определяется приложенным к трансформатору напряжением. Магнитные потери в стали пропорциональны квадрату значения магнитного потока. Следовательно, с достаточной точностью можно считать, что магнитные потери в стали магнитопровода равны мощности, потребляемой трансформатором при холостом ходе и номинальном первичном напряжении, т. е.

Читайте так же:
Стриппер для тонких проводов

Для определения суммарных электрических потерь согласно упрощенной схеме замещения (см. рис. 2.33,a) полагают, что 1’2 = 11. При этом

ΔPэл = ΔPэл1 + ΔPэл2 = I12R1 + I’22R2 ≈ I’22 (R1 + R’2) ≈ I’22Rк, (2.53)

где ΔPэл.ном — суммарные электрические потери при номинальной нагрузке.

За расчетную температуру обмоток — условную температуру, к которой должны быть отнесены потери мощности ΔРэл и напряжение ик, принимают: для масляных и сухих трансформаторов с изоляцией классов нагревостойкости А, Е, В (см. § 12.1) температуру 75°С; для трансформаторов с изоляцией классов нагревостойкости F, Н — температуру 115 °С.

Величину ΔРэл.ном ≈ I’22номRк ≈ I12номRк можно с достаточной степенью точности принять равной мощности Рк, потребляемой трансформатором при опыте короткого замыкания, который проводится при номинальном токе нагрузки. При этом магнитные потери в стали ΔРмвесьма малы по сравнению с потерями ΔPэл из-за сильного уменьшения напряжения U1, a следовательно, и магнитного потока трансформатора и ими можно пренебречь. Таким образом,

Подставляя полученные значения Р в (2.51) и учитывая, что Р2 = U2I2cosφ2 ≈ βSномcosφ2, находим

Эта формула рекомендуется ГОСТом для определения КПД трансформатора. Значения Ро и Рк для силовых трансформаторов приведены в соответствующих стандартах и каталогах.

Зависимость КПД от нагрузки. По (2.57) можно построить зависимость КПД от нагрузки (рис. 2.39, а). При β = 0 полезная мощность и КПД равны нулю. С увеличением отдаваемой мощности КПД увеличивается, так как в энергетическом балансе уменьшается удельное значение магнитных потерь в стали, имеющих постоянное значение. При некотором значении βопт кривая КПД достигает максимума, после чего начинает уменьшаться с увеличением нагрузки. Причиной этого является сильное увеличение электрических потерь в обмотках, возрастающих пропорционально квадрату тока, т. е. пропорционально β2, в то время как полезная мощность Р2возрастает только пропорционально β.

Максимальное значение КПД в трансформаторах большой мощности достигает весьма высоких пределов (0,98—0,99).

Рис. 2.39. Зависимость КПД трансформаторов η от нагрузки β

Оптимальный коэффициент нагрузки βопт, при котором КПД имеет максимальное значение, можно определить, взяв первую производную dη/dβ по формуле (2.57) и приравняв ее нулю. При этом

Следовательно, КПД имеет максимум при такой нагрузке, при которой электрические потери в обмотках равны магнит ным потерям в стали. Это условие (равенство постоянных и переменных потерь) приближенно справедливо и для других типов электрических машин. Для серийных силовых трансформаторов

Читайте так же:
Подключение дизель генератора к сети в доме

Указанные значения βопт получены при проектировании трансформаторов на минимум приведенных затрат (на их приобретение и эксплуатацию). Наиболее вероятная нагрузка трансформатора соответствует β = 0,5 ÷ 0,7.

В трансформаторах максимум КПД выражен сравнительно слабо, т. е. он сохраняет высокое значение в довольно широком диапазоне изменения нагрузки (0,4 < β < 1,5). При уменьшении cosφ2 КПД снижается (рис. 2.39,6), так как возрастают токи 12 и I1 при которых трансформатор имеет заданную мощность Р2.

В трансформаторах малой мощности в связи с относительным увеличением потерь КПД существенно меньше, чем в трансформаторах большой мощности. Его значение составляет 0,6—0,8 для трансформаторов, мощность которых менее 50 Вт; при мощности 100-500 Вт КПД равен 0,90-0,92.

Коэффициент мощности

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Содержание

Определение и физический смысл [ править | править код ]

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке, кроме значения коэффициента мощности, иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Прикладной смысл [ править | править код ]

Можно показать, что если к источнику синусоидального напряжения (например, розетка

230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Читайте так же:
Чашка для шлифования бетона

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). То есть счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Математические расчёты [ править | править код ]

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

  1. χ = P S >>
  2. P = U × I × cos ⁡ φ
  3. Q = U × I × sin ⁡ φ
  4. S = ∑ k = 1 ∞ ( U ) × I = P 2 + Q 2 + T 2 ^displaystyle (U)times I=+Q^<2>+T^<2>>>>

Типовые оценки качества электропотребления [ править | править код ]

Значение
коэффициента
мощности
ВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos ⁡ φ varphi >0,95…10,8…0,950,65…0,80,5…0,650…0,5
λ

95…100 %80…95 %65…80 %50…65 %0…50 %

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение cos ⁡ φ varphi > близко к 1, то есть к идеальному значению.

Несинусоидальность [ править | править код ]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности [ править | править код ]

Коррекция коэффициента мощности (англ.  power factor correction , PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos ⁡ φ . Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт [ источник не указан 3878 дней ] . Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

КПД – коэффициент полезного действия трансформатора

КПД – коэффициент полезного действия, одна из важнейших характеристик, определяющая эффективность работы устройства, относящее к трансформаторам. Рассмотрим особенности определения указанного показателя трансформатора с учётом принципа работы, конструкции данного электрооборудования и факторов, влияющих на эффективность эксплуатации.

Общие сведения о трансформаторах

Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.

Аппарат состоит из следующих основных элементов:

  • первичной и вторичной обмоток;
  • сердечника, вокруг которого навиты обмотки.

Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.

Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

потери

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.

кпд

Расчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

косвенным методом

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14): Открыть файл

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector