Montagpena.ru

Строительство и Монтаж
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическое сопротивление

Электрическое сопротивление

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему [1]

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Содержание

История [ править | править код ]

В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи, научился вычислять сопротивление металлических проводников и вывел закон Ома. Таким образом, в первом периоде развития электротехники (1800 –1831 годы) были созданы предпосылки для ее развития, для последующих применений электрического тока.

Само понятие «сопротивление» появилось задолго до изысканий Георга Ома. Впервые этот термин применил и употребил русский ученый Василий Владимирович Петров. Он установил количественную зависимость силы тока от площади поперечного сечения проводника: он утверждал, что при использовании более толстой проволоки происходит «более сильное действие… и весьма скорое течение гальвани-вольтовской жидкости». Кроме того, Петров четко указал на то, что при увеличении сечения проводника (при употреблении одной и той же гальванической батареи) сила тока в нем возрастает. [2]

Единицы и размерности [ править | править код ]

    (в СГСЭ и гауссовой системе, 1 statΩ = (10 9
  • c −2 ) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·10 11 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер ); (в СГСМ, 1 abΩ = 1·10 −9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер ).

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом −1 ), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс [5] .

Физика явления [ править | править код ]

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².

Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника [ править | править код ]

В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.

Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.

Читайте так же:
Регистры отопления из профильной трубы своими руками

Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.

видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.

Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.

Сопротивление тела человека [ править | править код ]

  • Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм [6] . Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых, меняется во времени, в-третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
  • Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц [7] .

Метрологические аспекты [ править | править код ]

Приборы для измерения сопротивления [ править | править код ]

Средства воспроизведения сопротивления [ править | править код ]

     — набор резисторов

Государственный эталон сопротивления [ править | править код ]

  • ГЭТ 14-91 Государственный первичный эталон единицы электрического сопротивления. Институт-хранитель: ВНИИМ.

Статическое и динамическое сопротивление [ править | править код ]

В теории нелинейных цепей используются понятия статического и динамического сопротивлений. Статическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение напряжения на элементе к току в нем. Динамическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение бесконечно малого приращения напряжения к соответствующему приращению тока.

4.1. Сила тока и плотность тока в проводнике

В проводниках часть валентных электронов не связана с определенными атомами и может свободно перемещаться по всему его объему. В отсутствие приложенного к проводнику электрического поля такие свободные электроны — электроны проводимости — движутся хаотично, часто сталкиваясь с ионами и атомами, и изменяя при этом энергию и направление своего движения. Через любое сечение проводника в одну сторону проходит столько же электронов, сколько и в противоположную. Поэтому результирующего переноса электронов через такое сечение нет, и электрический ток равен нулю. Если же к концам проводника приложить разность потенциалов, то под действием сил электрического поля свободные заряды в проводнике начнут двигаться из области большего потенциала в область меньшего — возникнет электрический ток. Исторически сложилось так, что за направление тока принимают направление движение положительных зарядов, которое соответствует их переходу от большего потенциала к меньшему.

Электрический ток характеризуется силой тока I (рис. 4.1).

Сила тока есть скалярная величина, численно равная заряду переносимому через поперечное сечение проводника в единицу времени

Рис. 4.1. Сила тока в проводнике

Согласно (4.1), сила тока в проводнике равна отношению заряда , прошедшего через поперечное сечение проводника за время к этому времени.

Замечание: В общем случае сила тока через некоторую поверхность равна потоку заряда через эту поверхность.

Если сила тока с течением времени не изменяется, то есть за любые равные промежутки времени через любое сечение проводника проходят одинаковые заряды, то такой ток называется постоянным, и тогда заряд, протекший за время t, может быть найден как (рис. 4.2)

Читайте так же:
Сталь марки ст3сп характеристики

Рис. 4.2. Постоянный ток, протекающий через разные сечения проводника

Величина , численно равная заряду, проходящему через единицу площади поперечного сечения проводника за единицу времени, называется плотностью тока.

С учетом определения силы тока плотность тока через данное сечение может быть выражена через силу тока , протекающего через это сечение

При равномерном распределении потока зарядов по всей площади сечения проводника плотность тока равна

В СИ единицей измерения силы тока является ампер (А). В СИ эта единица измерения является основной.

Уравнение (4.1) связывает единицы измерения силы тока и заряда

В СИ единицей измерения плотности тока является ампер на квадратный метр (А/м 2 ):

Это очень малая величина, поэтому на практике обычно имеют дело с более крупными единицами, например

Плотность тока можно выразить через объемную плотность зарядов и скорость их движения v (рис. 4.3).

Рис. 4.3. К связи плотности тока j с объемной плотностью зарядов и дрейфовой скоростью v носителей заряда. За время dt через площадку S пройдут все заряды из объема dV = vdt S

Полный заряд, проходящий за время dt через некоторую поверхность S, перпендикулярную вектору скорости v, равен

Так как dq/(Sdt) есть модуль плотности тока j, можно записать

Поскольку скорость v есть векторная величина, то и плотность тока также удобно считать векторной величиной, следовательно

Здесь плотность заряда, скорость направленного движения носителей заряда.

Замечание: Для общности использован индекс , так как носителями заряда, способными участвовать в создании тока проводимости, могут быть не только электроны, но, например, протоны в пучке, полученном из ускорителя или многозарядные ионы в плазме, или так называемые «дырки» в полупроводниках «р» типа, короче, любые заряженные частицы, способные перемещаться под воздействием внешних силовых полей.

Кроме того, удобно выразить плотность заряда через число носителей заряда в единице объема — (концентрацию носителей заряда) . В итоге получаем:

Следует подчеркнуть, что плотность тока, в отличие от силы тока — дифференциальная векторная величина. Зная плотность тока, мы знаем распределение течения заряда по проводнику. Силу тока всегда можно вычислить по его плотности. Соотношение (4.4) может быть «обращено»: если взять бесконечно малый элемент площади , то сила тока через него определится как . Соответственно, силу тока через любую поверхность S можно найти интегрированием

Что же понимать под скоростью заряда v, если таких зарядов — множество, и они заведомо не движутся все одинаково? В отсутствие внешнего электрического поля, скорости теплового движения носителей тока распределены хаотично, подчиняясь общим закономерностям статистической физики. Среднее статистическое значение ввиду изотропии распределения по направлениям теплового движения. При наложении поля возникает некоторая дрейфовая скорость — средняя скорость направленного движения носителей заряда:

которая будет отлична от нуля. Проведем аналогию. Когда вода вырывается из шланга, и мы интересуемся, какое ее количество поступает в единицу времени на клумбу, нам надо знать скорость струи и поперечное сечение шланга. И нас совершенно не волнуют скорости отдельных молекул, хотя они и очень велики, намного больше скорости струи воды, как мы убедились в предыдущей части курса.

Таким образом, скорость в выражении (4.7) — это дрейфовая скорость носителей тока в присутствии внешнего электрического поля или любого другого силового поля, обуславливающего направленное (упорядоченное) движение носители заряда. Если в веществе возможно движение зарядов разного знака, то полная плотность тока определяется векторной суммой плотностей потоков заряда каждого знака.

Как уже указывалось, в отсутствие электрического поля движение носителей заряда хаотично и не создает результирующего тока. Если, приложив электрическое поле, сообщить носителям заряда даже малую (по сравнению с их тепловой скоростью) скорость дрейфа, то, из-за наличия в проводниках огромного количества свободных электронов, возникнет значительный ток.

Поскольку дрейфовая скорость носителей тока создается электрическим полем, логично предположить пропорциональность

так что и плотность тока будет пропорциональна вектору напряженности (рис. 4.4)

Более подробно этот вопрос обсуждается в Дополнении

Входящий в соотношение (4.9)

Коэффициент пропорциональности называется проводимостью вещества проводника.

Проводимость связывает напряженность поля в данной точке с установившейся скоростью «течения» носителей заряда. Поэтому она может зависеть от локальных свойств проводника вблизи этой точки (то есть от строения вещества), но не зависит от формы и размеров проводника в целом. Соотношение (4.9) носит название закона Ома для плотности тока в проводнике (его называют также законом Ома в дифференциальной форме).

Читайте так же:
Сталь р18 характеристики и применение

Рис. 4.4. Силовые линии электрического поля совпадают с линиями тока

Чтобы понять порядки величин, оценим дрейфовую скорость носителей заряда в одном из наиболее распространенных материалов — меди. Возьмем для примера силу тока I = 1 А, и пусть площадь поперечного сечения провода составляет
1 мм 2 = 10 –6 м 2 . Тогда плотность тока равна j = 10 6 А/м 2 . Теперь воспользуемся соотношением (4.7)

Носителями зарядов в меди являются электроны (е = 1.6·10 -19 Кл), и нам осталось оценить их концентрацию . В таблице Менделеева медь помещается в первой группе элементов, у нее один валентный электрон, который может быть отдан в зону проводимости. Поэтому число свободных электронов примерно совпадает с числом атомов. Берем из справочника плотность меди — r Cu=8,9·10 3 кг/м3. Молярная масса меди указана в таблице Менделеева — MCu = 63,5·10 –3 кг/моль. Отношение

— это число молей в 1 м 3 . Умножая на число Авогадро Na = 6,02·10 23 моль –1 , получаем число атомов в единице объема, то есть концентрацию электронов

Теперь получаем искомую оценку дрейфовой скорости электронов

Для сравнения: скорости хаотического теплового движения электронов при 20°С в меди по порядку величины составляют 10 6 м/с, то есть на одиннадцать порядков величины больше.

Возьмем произвольную воображаемую замкнутую поверхность S, которую в разных направлениях пересекают движущиеся заряды. Мы видели, что полный ток через поверхность равен

где dq — заряд, пересекающий поверхность за время dt. Обозначим через q ‘ заряд, находящийся внутри поверхности. Его можно выразить через плотность заряда , проинтегрированную по всему объему, ограниченному поверхностью

Из фундаментального закона природы — закона сохранения заряда — следует, что заряд dq, вышедший через поверхность за время dt, уменьшит заряд q ‘ внутри поверхности точно на эту же величину, то есть dq ‘ = –dq или

Подставляя сюда написанные выше выражения для скоростей изменения заряда внутри поверхности , получаем математическое соотношение, выражающее закон сохранения заряда в интегральной форме

Напомним, что интегрирования ведутся по произвольной поверхности S и ограниченному ею объему V.

Особенности поперечного сечения

Во время строительства зданий, сооружений наступает момент, когда нужно проложить электропроводку. Возникает вопрос, какой нужно выбрать провод, какое у него должно быть поперечное сечение и в чём измеряется площадь поперечного сечения. Эти и многие другие вопросы освещены в данной статье.

Что значит поперечное сечение

Перед тем как раскрыть основное понятие, нужно расшифровать значение термина и понять, чем провод отличается от кабеля. Провод является проводником, который используется, чтобы соединить несколько участков электрической цепи. Может иметь одну или много токовых проводящих жильных элементов. Они в свою очередь могут быть голыми, изолированными, одножильными и многожильными.

Площадь среза проводника

Первые используются в воздушных линиях электрических передач. Вторые применяются в электрических устройствах, щитках или шкафах. В быту они находятся внутри электрической проводки.

К сведению! Изолированные и одножильные проводники используются везде, а многожильные применяются там, где нужны изгибы с малым радиусом.

Что собой представляет поперечное сечение

Поперечным сечением называется фигура, которая образуется от проводникового рассечения плоскостью направления. Площадь, которая получена при перпендикулярном разрезе любого вида провода, указывается в квадратных миллиметрах. Это важный параметр для расчета электрической сети.

Сфера применения

Поперечное сечение на чертеже изображено в виде фигуры, которая образована делением детали плоскостью. Используется в электротехнике, электричестве, когда рассматривается проводниковая жила под прямым углом к его продольной половине. Через поделенную жилу проходят электроны.

Обратите внимание! Диаметр жилы — это не сечение. Для определения площади жилы нужно использовать специальную формулу определения круга.

Зная, какая величина разреза провода, длина и удельное сопротивление, можно узнать, какое имеет сопротивление проводник электротоку, проходящий сквозь его структуру. Если неправильно подобрать разрез проводника, это может привести к возгоранию электрической проводки в системе в результате его перегрева, оплавления.

Читайте так же:
Типы сварок по металлу

Строительство — основная сфера применения проводов

Целью расчета площади поперечного сечения может быть получение нужного количества электроэнергии для нормальной работы электрических приборов, исключение переплат неиспользуемым энергоносителем, подключение мощной техники к сетевому напряжению, предотвращение возгорания участка, исключение оплавки слоя изоляции, предотвращение появления короткого замыкания в бытовой и промышленной сетях. Также это может быть получение правильной организации системы освещения.

К сведению! Нормальным сечением проводника для освещения является показатель 1,5 мм² для линии и 4-6 мм² для ввода.

Чем можно делать расчеты поперечного сечения

Иногда приходится измерять поперечное сечение самостоятельно, поскольку на провод не нанесена маркировка. Это не повод, чтобы не использовать его. Сперва нужно выяснить, из какого материала была сделана жила. Есть белая алюминиевая, медная красная и латунная желтая. После этого необходимо рассчитать площадь. Для этого следует выяснить проводниковый диаметр, убрав изоляцию. Диаметр можно измерить, используя:

  • штангенциркуль, микрометр;
  • карандаш и линейку.

Важно! Во втором случае результат будет приблизительным. Его использовать следует в крайних случаях. Лучше рассчитывать диаметр по формуле и штангенциркулем.

Штангенциркуль

Сделать штангенциркулем можно замер провода, который имеет любые размеры. Для этого нужно поместить его между штангенциркульными щипцами. Сделать так, чтобы они смотрены на деление шкалы. Затем подсчитать значение.

Штангенциркуль

Целые числа можно получить по верхней шкале, а десятичные — по нижней.

Карандаш + линейка

Если штангенциркуля нет, а длина оголенного проводника позволяет сделать его накрутку на карандаш длиной не меньше 1 см, можно использовать данный способ. Все, что нужно – подсчитать витки, которые поместились на отрезке длины 1 см. Диаметр получается делением длины отрезка на витки.

С помощью карандаша и линейки замеры будут не совсем точными

Обратите внимание! Точность измерения будет зависеть от того, как плотно была сделана намотка, и какая у нее длина.

В чем измеряется поперечное сечение

После определения диаметра указанными способами площадь сечения можно определить по формуле или специальной таблице. Измеряется она в квадратных миллиметрах. Данная единица измерения производная согласно единой международной системе измерений.

Мера измерения

При этом разрез жил всегда круглый.

Формула измерения площади поперечного сечения

Рассчитать поперечное сечение, а именно площадь можно через формулу круга S = π * R2, где первым звеном является площадь круга, вторым — константа Пи 3,14, а третьим — радиус. Принимая во внимание тот факт, что радиус является одной второй диаметра, то формула может быть преобразована по желанию. Рассчитывая площадь, следует использовать диаметр.

Обратите внимание! Чтобы определить сечение многожильного провода, нужно вычислить площадь одной жилы, а затем полученное значение перемножить на количество проводниковых жил.

Определяя диаметр проводника комнатной электропроводки, нужно взять во внимание показатель одновременной максимальной потребительской нагрузки. Принимая в расчет показатель мощности, берется сечение линий, идущих от центра счетчика и вводных автоматов к распределительной коробке. Это места с суммарной нагрузкой всех подсоединенных потребителей. Делать выбор лучше в пользу медного провода с жилами не меньше 6 мм².

Формула для расчета

Поперечным сечением называется площадь среза под углом 90° к оси. Рассчитывать его на проводнике можно штангенциркулем, карандашом, линейкой. Измеряется оно в квадратных миллиметрах. Подсчитывается по специальной формуле, представленной выше. Ничего сложного в этом нет, главное — выбрать самый точный вариант.

Расчет площади поперечного сечения круга

Площадь поперечного сечения

В инженерной и строительной практике нередко встречаются задачи по расчёту площади поперечного сечения. Если фигуру разрезать по линии, которая перпендикулярна продольной оси предмета, то полученный торец и будет поперечным сечением. Круг — один из наиболее часто встречающихся видов подобного рассечения. Такой срез присущ цилиндру, шару, конусу, тору, эллипсоиду.

Определение величины

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

Сечение круга

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

Читайте так же:
Термопинцет для smd компонентов своими руками

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.

Область применения

Круг — одна из фундаментальных фигур, которые окружают человека повсюду. Трубы, колеса, лампы, конфорки у плиты — всё это имеет форму круга или поперечное сечение в виде круга. Расчёт площади такого сечения может понадобиться в следующих ситуациях:

  1. Определение объемов емкостей.
  2. Решение задач по сопротивлению материалов и электротехнике.
  3. Расчет количества материалов при проектировании, строительстве и ремонте.
  4. Ведение поливного земледелия.

Стоит обратить внимание на разницу между кругом и окружностью. Окружность — это замкнутая кривая, все точки которой равно удалены от центра, в то время как круг — это часть плоскости (геометрическая фигура), ограниченная окружностью.

Круг имеет ряд характеристик:

  • радиус (r/R) — отрезок, соединяющий центр фигуры с его границей;
  • диаметр (d/D) — отрезок, который соединяет две точки границы круга и проходит через его центр;
  • длина окружности (C/c/L/l).

Площадь поперечного сечения круга

Теорема гласит: площадь круга (S) равна произведению половины длины окружности и его радиуса. Длина окружности С находится в прямой зависимости от радиуса R с коэффициентом π («пи» = 3,14).

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Как рассчитать площадь поперечного сечения круга с помощью основных формул и теорем

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

Где необходим расчёт величины, базовые характеристики фигуры

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector