Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подробное описание

Подробное описание

Натуральный каучук, полимер растительного происхождения, вулканизацией которого получают резину.
Натуральный каучук относится к группе эластомеров — высокомолекулярных соединений, обладающих способностью к большим обратимым деформациям при комнатной и более низких температурах. Натуральный каучук содержится в млечном соке (латексе) каучуконосных растений; отдельные включения каучука имеются также в клетках коры и листьев этих растений. Добывают натуральный каучук главным образом из латекса бразильской гевеи, которая произрастает на плантациях в тропических странах.
Натуральный каучук – аморфное, способно кристаллизоваться твёрдое тело. Он не набухает и не растворяется в воде, спирте, ацетоне и ряде других жидкостей. Набухая и затем, растворяясь в жирных и ароматических углеводородах (бензине, бензоле, эфире и других) и их производных, каучук образует коллоидные (клееобразные) растворы, широко используемые в технике.
Натуральный (природный) каучук — это высокомолекулярный непредельный углеводород элементарного состава (С5Н8)n. Каучук натуральный содержит также 2,2—3,8% белков и аминокислот, 1,5—4,0% веществ, извлекаемых ацетоном (так называемый ацетоновый экстракт — олеиновая, стеариновая, линолевая кислоты, каротин и др.), соединения металлов переменной валентности — меди (до 0,0008%), марганца (до 0,001%), железа (до 0,01%), песок и некоторые др. примеси.
Молекула натурального каучука состоит из нескольких тысяч исходных химических групп (звеньев), соединённых друг с другом и находящихся в непрерывном колебательно-вращательном движении. Такая молекула похожа на спутанный клубок, в котором составляющие его нити местами образуют правильно ориентированные участки.
Строение макромолекулы каучука обеспечивает его высокую эластичность — наиболее важное техническое свойство. Каучук обладает поразительной способностью обратимо растягиваться до 900% первоначальной длины.
В соответствии с «Международным стандартом по качеству и упаковке натурального каучука» (1969) каучук натуральный подразделяют на 8 международных типов, включающих 35 международных сортов. Основные типы натурального каучука — рифлёный смокед-шит (продукт светло-янтарного цвета — «копчёный лист») и светлый креп (продукт светло-кремового цвета, перед выделением которого в латекс вводят специальные отбеливающие вещества, например бисульфит натрия; натуральный каучук этого типа копчению не подвергают). Качество натурального каучука международных типов и сортов оценивают на основании внешнего осмотра и сравнения с эталоном. Существует также классификация натурального каучука по техническим стандартам, в которых регламентируется содержание примесей в каучуке. Наряду с натуральным каучуком общего назначения выпускают каучуки специальных типов, например с улучшенными технологическими или механическими свойствами, изготовляемые в порошкообразной выпускной форме, и др. Ведутся обширные опытные и исследовательские работы как в направлении улучшения качества натурального каучука, так и повышения продуктивности каучуконосов.
Основная область применения натурального каучука — производство шин. Его используют также в производстве резинотехнических изделий (транспортёрные ленты, приводные ремни, амортизаторы, уплотнители), электроизоляционных материалов, резиновых изделий народного потребления, при изготовлении резиновых клеев. Некоторое количество натурального каучука используют в виде латекса. Благодаря созданию стереорегулярных синтетических каучуков, а также широкого ассортимента синтетических каучуков специального назначения, потребление натурального каучука в некоторых отраслях промышленности сокращается.
Разновидностью каучука является менее эластичная гуттаперча, или балата. Она добывается из латекса растущего в Малайзии дерева – бересклета. Гуттаперча не эластична. Причина этого в различном пространственном строении макромолекул этих природных полимеров. В макромолекуле натурального каучука участки ее цепи у каждой кратной связи находятся в цис-положении, а в макромолекуле гуттаперчи они находятся в транс-положении.
Гуттаперча использовалась до 1933 года для изоляции морских кабелей; не нашла широкого применения, но она применяется для производства жевательных резинок, в зубоврачебной практике (как материал для пломб), в производстве мячей для гольфа.

«Я не слышал, что вы сказали. Но я совершенно с вами не согласен»
В 1928 году советская пресса сообщила о создании в России С. Лебедевым искусственного синтетического каучука. Т. Эдисон откликнулся на это так: «Известие о том, – писал он, – что Советскому Союзу удалось получить синтетический каучук, невероятно. Этого никак нельзя сделать. Скажу больше – все сообщение ложь». Впрочем, такая реакция лишь рельефнее оттеняет значение открытия, сделанного С. Лебедевым. Он действительно превысил «полномочия» науки того времени, пройдя через невозможное.

Синтетические латексы — водные дисперсии синтетических каучуков, образующиеся в результате эмульсионной полимеризации. К синтетическим латексам относят также дисперсии пластиков, например поливинилхлорида, поливинилацетата. Искусственные латексы (искусственные дисперсии) — продукты, которые образуются при диспергировании «готовых» полимеров в воде. Как правило, такие латексы получают из каучуков, синтезируемых полимеризацией в растворе, например бутилкаучука, изопреновых каучуков. Образующийся в процессе синтеза раствор каучука в углеводороде эмульгируют в воде, а затем углеводород отгоняют.
Латекс состоит из мельчайших частичек жидкости, твёрдых частиц и других примесей. Только около 33% латекса составляет каучук, 66% вода и около 1% другие вещества.

Области применения латексов чрезвычайно разнообразны вследствие высокой технико-экономической эффективности их использования в различных отраслях промышленности. Применение латексов позволяет получать такие изделия, которые из твёрдых каучуков вообще не могут быть изготовлены, например тонкостенные бесшовные. На основе латексов изготовляют клеи и краски, не содержащие токсичных и пожароопасных растворителей. Применение латексов в производстве бумаги способствует повышению её прочности, гибкости, влаго- и маслостойкости и улучшению внешнего вида. Латексы используют также для аппретирования текстильных материалов; для пропитки шинного корда; при изготовлении прошивных ковров, ворсовых тканей, искусственного меха с целью закрепления ворса и лучшего сохранения формы изделий из этих материалов; в качестве связующего при изготовлении нетканых материалов; для отделки натуральной и при получении искусственной кожи. Широкое применение латексы находят в строительстве при изготовлении полимерцементов, настилов для полов, дорожных покрытий, герметиков. Латексы вводят в состав композиций, применяемых для защиты почвы от ветровой эрозии. На основе латексов получают антикоррозионные покрытия и т.д. Наибольшее значение в современной технологической практике имеют синтетические латексы благодаря их широкому ассортименту и разнообразию свойств.

Читайте так же:
Почему сгорает диодный мост генератора

Каучуки

Каучу́ки — натуральные или синтетические эластомеры, характеризующиеся эластичностью, водонепроницаемостью и электроизоляционными свойствами; из которых путём вулканизации получают резины и эбониты.

Содержание

Природный каучук [ править | править код ]

Высокомолекулярный углеводород (C5H8)n, цис-полимер изопрена [1] ; содержится в млечном соке (латексе) гевеи [1] , кок-сагыза (многолетнего травянистого растения рода Одуванчик) и других каучуконосных растений [1] .

Каучук открыт де ла Кондамином в Кито (Эквадор) в 1751 году. Растворим в углеводородах и их производных (бензине, бензоле, хлороформе, сероуглероде и т. д.); в воде, спирте, ацетоне натуральный каучук практически не набухает и не растворяется. Уже при комнатной температуре натуральный каучук присоединяет кислород, происходит окислительная деструкция (старение каучука), при этом уменьшается его прочность и эластичность. При температуре выше 200 °C натуральный каучук разлагается с образованием низкомолекулярных углеводородов.

При взаимодействии натурального каучука с серой, хлористой серой, органическими пероксидами (вулканизация) происходит соединение через атомы серы длинных макромолекулярных связей с образованием сетчатых структур. Это придаёт каучуку высокую эластичность в широком интервале температур [1] .

Натуральный каучук перерабатывают в резину. В сыром виде применяют не более 1 % добываемого натурального каучука (резиновый клей). Более 60 % натурального каучука используют для изготовления автомобильных шин. В промышленных масштабах натуральный каучук производится в Индонезии, Малайзии, Вьетнаме, Таиланде, Бразилии и КНР.

Каучуковая лихорадка [ править | править код ]

Развивающееся машиностроение и электротехника, а позже автомобилестроение потребляли всё больше резины. Для этого требовалось всё больше сырья. Из-за увеличения спроса в Южной Америке в конце XIX — начале XX веков стали возникать и быстро развиваться огромные плантации каучуконосов, выращивающие монокультурно эти растения. Позже центр выращивания каучуконосов переместился в Индонезию и Цейлон.

Синтетические каучуки [ править | править код ]

Разработка синтетических каучуков впервые началась в России в 1900 году учениками Бутлерова — Кондаковым, Фаворским, Лебедевым, Бызовым [2] . В 1900 году И. Л. Кондаков впервые получил синтетическим путём изопрен, изучением полимеризации которого занялся А. Фаворский. В 1903—1910 гг. параллельно группами учёных под руководством С. Лебедева и Б. Бызова велись работы по изучению процесса полимеризации и изомеризации непредельных углеводородов, и в 1910 г Лебедеву удалось получить образец синтетического каучука на основе 1,3-бутадиена. В 1913 г Бызовым был предложен способ получения диенов из нефти путём её пиролиза, где одним из продуктов является, собственно, 1,3-бутадиен. К сожалению, из-за трудностей в освоении технологии метод был оставлен. Начали искать более простые и дешёвые способы получения 1,3-бутилена, один из которых был разработан тем же Лебедевым (1926-1928), заключающийся в дегидрировании-дегидратации этанола. [3] [4]

Одновременно и независимо подобные работы велись в Англии. Первый патент на процесс получения бутадиенового синтетического каучука с использованием натрия в качестве катализатора полимеризации был выдан в Англии в 1910 году. Первое маломасштабное производство синтетического каучука по технологии, сходной с описанной в английском патенте, имело место в Германии во время Первой мировой войны.

Впервые технология производства бутадиенового синтетического каучука [ уточнить ] была разработана в лаборатории завода «Треугольник» Б. Бызовым, получившим за это изобретение в 1911 году премию имени Бутлерова [ источник не указан 355 дней ] ; однако патент на это изобретение был оформлен только в 1913 году.
Производство бутадиена в России началось в 1915 году, по технологии, разработанной И. И. Остромысленским, позднее эмигрировавшим в США. Во время Первой мировой войны на заводе «Треугольник» был освоен выпуск противогазов из синтетического каучука Бызова [5] .

Коммерческое производство синтетического каучука началось в 1919 году в США (компания Thiokol) и к 1940 году в мире производилось более 10 его марок. Основными производителями были США, Германия и СССР [6] .

В СССР работы по получению синтетического каучука были продолжены Бызовым и Лебедевым, в 1928 году разработавшим советскую промышленную технологию получения бутадиена. Производство синтетического каучука было начато на заводе СК-1 в 1932 году по методу С. В. Лебедева (получение из этилового спирта бутадиена с последующей анионной полимеризацией жидкого бутадиена в присутствии натрия) [7] . В СССР впервые в мире было организовано производство синтетического каучука в промышленных масштабах.[1] Прочность на разрыв советского синтетического каучука составляла около 2000 psi (для натурального каучука этот показатель составляет 4500 psi, для «неопрена», производство которого было начато компанией Дюпон (США) в 1931 году, — 4000 psi). В 1941 году, в рамках поставок по программе ленд-лиза, СССР получил более совершенную технологию получения синтетического каучука [6] .

Читайте так же:
Универсальная насадка на шуруповерт

В Германии бутадиен-натриевый каучук нашёл довольно широкое применение под названием «Буна» [de] .

Синтез каучуков стал значительно дешевле с изобретением в 1950-х годах катализаторов Циглера — Натта.

Изопреновые каучуки — синтетические каучуки, получаемые полимеризацией изопрена в присутствии катализаторов — металлического лития, перекисных соединений. В отличие от других синтетических каучуков изопреновые каучуки, подобно натуральному каучуку, обладают высокой клейкостью и незначительно уступают ему в эластичности.

Каучуки с гетероатомами в качестве заместителей или имеющими их в своём составе часто характеризуются высокой стойкостью к действию растворителей, топлив и масел, устойчивостью к действию солнечного света, но обладают худшими механическими свойствами. Наиболее массовыми в производстве и применении каучуками с гетерозаместителями являются хлоропреновые каучуки («неопрен») — полимеры 2-хлорбутадиена.

В настоящее время большая часть производимых каучуков является бутадиен-стирольными или бутадиен-стирол-акрилонитрильными сополимерами.

В ограниченном масштабе производятся и используются тиоколы — полисульфидные каучуки, получаемые поликонденсацией дигалогеналканов (1,2-дихлорэтана, 1,2-дихлорпропана) и полисульфидов щелочных металлов.

Основные типы синтетических каучуков:

    (neoprene) — разновидность хлоропренового каучука

Промышленное применение [ править | править код ]

Наиболее массовое применение каучуков — это производство резин для автомобильных, авиационных и велосипедных шин.

Из каучуков изготавливаются специальные резины огромного разнообразия уплотнений для целей тепло-, звуко-, воздухо- и гидроизоляции разъёмных элементов зданий, в санитарной и вентиляционной технике, в гидравлической, пневматической и вакуумной технике.

Прессованием массы, состоящей из каучука, асбеста и порошковых наполнителей, получают паронит — листовой материал для изготовления прокладочных изделий с высокой термостойкостью, работающих в различных средах — вода и водяной пар с давлением до 5 МН/м 2 (50 ат) и температурой до 450 °С; нефть и нефтепродукты при температурах 200—400 °С и давлениях 7—4 мН/м 2 соответственно; жидкий и газообразный кислород, этиловый спирт и т. д. [8] . Высокие уплотняющие свойства паронита обусловлены тем, что его предел текучести, составляющий около 320 МПа, достигается при стягивании соединения болтами или шпильками, при этом паронит заполняет все неровности, раковины, трещины и другие дефекты уплотняемых поверхностей и герметизирует соединение. Паронит не является коррозионно-активным материалом и хорошо поддается механической обработке, что позволяет легко изготавливать прокладки любой конфигурации, не теряющие своих эксплуатационных качеств в любых климатических условиях — ни в районах с умеренным климатом, ни в тропических и пустынных климатических условиях, ни в условиях Крайнего Севера. Высокая термостойкость паронита позволяет применять его в двигателях внутреннего сгорания.
Армируя паронит металлической сеткой для повышения механических свойств, получают ферронит [8] .

В ракетной технике синтетические каучуки используются в качестве полимерной основы при изготовлении твёрдого ракетного топлива, в котором они играют роль горючего, а в качестве окислителя используется порошок селитры (калийной или аммиачной) или перхлората аммония.

Каучук

Каучук

Впервые каучук был завезен из Америки в Европу в XVI веке прославленным путешественником и первооткрывателем Христофором Колумбом. Наблюдая за игрой туземцев в мяч, Колумб обратил внимание на сам мяч, сделанный из неизвестного в Европе материала. Мяч легко подпрыгивал от земли, сжимался и быстро восстанавливал свою первоначальную форму. Вместе с другими диковинками в Европу привезли образцы и этого материала, получившего название «каучук», что переводится с индейского как «слезы дерева». Каучук представлял собой сок бразильской гевеи, который начинали собирать с дерева, достигшего семилетнего возраста. Белый, словно молоко, сок (латекс) собирали в подвешенные чашечки и сливали в большой сосуд. Сок быстро сворачивался при нагревании, превращаясь в темный смолообразный продукт. Это и был каучук.

Дерево природного каучукаГевея — дерево природного каучука

Изначально европейцы не смогли в полной мере оценить материал по достоинству, хотя из Южной Америки завозили в Европу непромокаемые сапоги, дождевики, бутылки и другие предметы, изготовленные из каучука. Впервые каучук применили в Европе в виде стиральных резинок. Только в конце XVIII столетия патент на производство непромокаемых плащей из необычного материала взял английский ученый-химик Макинтош. Плащи из каучука стали называться по имени своего создателя «макинтошами». Недостатком таких плащей оказался тот факт, что в жару они становились липкими, а в мороз — твердыми. В результате многочисленных опытов был найден способ устранить эти недостатки путем вулканизации каучука. Американский химик Гудьир в 1839 году установил, что каучук меняет свои свойства при нагревании его с серой. Он становится менее чувствительным к изменениям температуры, более упругим и гибким. Новый вулканизированный каучук назвали резиной, он быстро завоевал большую популярность. Резина явилась идеальным материалом для изготовления покрышек для автомобилей, амортизаторов, приводных ремней, рукавов, транспортных средств, гибкой изоляции, различных прокладок и многого другого. С середины XIX века начинается массовый выпуск резиновых изделий. В несколько раз возрос спрос на каучук, дикая гевея уже не могла удовлетворять потребности промышленности. Гевею начали выращивать в тропиках Суматры, Явы, Малайского архипелага, были созданы каучуконосные плантации, но спрос на каучук продолжал расти.

Читайте так же:
Сетевой фильтр на весь дом

Ученые усиленно искали способ получать каучук искусственным путем, но на это им понадобилось почти сто лет. В результате многочисленных исследований было установлено, что натуральный каучук на 9/10 состоит из углеводорода полиизопрена (формула (C5H8) n, где n — больше тысячи). Кроме полиизопрена каучук содержит минеральные вещества и смолоподобные белковые. Очищенный от белков и смол чистый полиизопрен довольно неустойчив и быстро теряет на воздухе эластичность и прочность. Для получения искусственного каучука необходимо было решить следующие задачи: 1 — научиться выделять изопрен из других веществ; 2 — выполнять реакцию полимеризации изопрена; 3 — найти нужные вещества для обработки полученного каучука, чтобы избежать его разложения. В 1860 году англичанин Вильямс сумел выделить из каучука изопрен путем сухой перегонки. Это была легкая бесцветная жидкость, обладающая своеобразным запахом. В 1879 году французский ученый Г. Бушарда получил каучукоподобный продукт, воздействуя на нагретый изопрен соляной кислотой. В 1884 году английский ученый Тилден сумел получить изопрен из скипидара путем его высокотемпературного разложения. Однако для промышленного производства эти способы не годились из-за дороговизны сырья, малого выхода изопрена,сложности технических процессов.

Изделия из каучука

В 1901 г. русский ученый-химик Кондаков доказал, что в каучукоподобное вещество, помимо изопрена, превращается и диметилбутадиен, если в течение года держать его на рассеянном свету или в темноте. Правда, изделия из синтетического каучука, полученного из диметилбутадиена, были дорогими и низкого качества. В 1914 год англичанам Стренджу и Мэтьюсу удалось получить в лабораторных условиях каучук из дивинила. Однако им не удалось найти способ получения дивинила и создать установку для синтеза каучука на заводе. Через 15 лет академик С.В. Лебедев разработал способ получения синтетического каучука промышленным путем. В качестве исходного материала ученый взял дивилин, отказавшись от изопрена. Прежде всего необходимо было найти способ получения дивинила из легкодоступного и дешевого сырья. Таким исходным сырьем стал спирт. В качестве катализатора послужила глина из Коктебеля. В середине 1927 г. из спирта Лебедеву удалось получить дивинил. Полимеризация дивинила была сделана по способу Мэтьюса и Стренджа. Полученный каучук разминали с содержащимся в нем натрием в мешалке, а после смешивали с усилителями, каолином, сажей, магнезией и прочими компонентами, которые бы предохраняли каучук от разложения. К концу 1929 года Лебедевым была разработана и представлена технология заводского процесса. Уже в феврале следующего года приступили к строительству опытного завода в Ленинграде. В феврале 1931 года впервые в мире были получены 250 кг дешевого синтетического каучука промышленным способом. Позже были найдены еще ряд способов получения синтетического каучука. Синтетический каучук из изопрена в промышленных условиях впервые получили в 1965 г. в Советском Союзе.

Вулканизация каучука

Каучук, добываемый в природе, не всегда подходит для изготовления деталей. Это вызвано тем, что его природная эластичность очень низка, и очень зависит от внешней температуры. При температурах близких к 0, каучук становится твердым или при дальнейшем понижении он становится хрупким. При температуре порядка + 30 градусов каучук начинает размягчаться и при дальнейшем нагреве переходит в состояние расплава. При обратном охлаждении своих изначальных свойств он не восстанавливает.

Каучук и резина Каучук и резина Мягкая резина и твердая резина из каучука Мягкая резина и твердая резина из каучука Виды каучука Виды каучука

Кроме того природный каучук может быть с легкостью растворен органическими соединениями.

Для закрепления ряда достоинств каучука и устранения его недостатков применяют такой технический прием как вулканизация каучука.

Вулканизация

Вулканизация, так называют один из технологических процессов, применяемых на производстве резины. Во время этого процесса сырой каучук, натурального или искусственного происхождения, становится резиной.

У каучука, прошедшего через вулканизацию, заметно улучшается прочность, химическая стойкость, эластичность, повышается устойчивость к воздействию высоких и низких температур и ряд других технических свойств. Суть этого процесса заключается в следующем – под воздействием высокой температуре и определенного давления происходит связывание линейных макромолекул в единую целое. Эта система носит название вулканизационной сетки.

По окончании процесса вулканизации между макромолекулами создаются поперечные связи. Их количество и структура определяется способом проведения этой операции. Во время этого процесса определенные свойства каучука изменяются не линейно, а с прохождением через определенные точки максимума и минимума. Точка, в которой проявляются оптимальные свойства резины, называется оптимумом вулканизации.

Вулканизация каучука

Для обеспечения необходимых эксплуатационных и технических свойств резины в каучук добавляют различные вещества и материалы – сажу, мел, размягчители и пр.

На практике применяют несколько методов вулканизации, но их объединяет одно – обработка сырья вулканизационной серой. В некоторых учебниках и нормативных документах говорится о том, что в качестве вулканизирующих агентов могут быть использованы сернистые соединения, но на самом деле они могут считаться таковыми, только потому, что они содержат в себе серу. Иначе, они могут оказывать влияние вулканизацию ровно, так же как и остальные вещества, которые не содержат соединений серы.

Читайте так же:
Механическая обработка металла виды и способы

Некоторое время назад, проводились исследования в отношении проведения обработки каучука органическими соединениями и некоторыми веществами, например:

  • фосфор;
  • селен;
  • тринитробензол и ряд других.

Но проведенные исследования показали, что никакого практической ценности эти вещества в части вулканизации не имеют.

Процесс вулканизации

Процесс вулканизации каучука можно разделить на холодный и горячий. Первый, может быть разделен на два типа. Первый подразумевает использование полухлористой серы. Механизм вулканизации с применением этого вещества выглядит таким образом. Заготовку, выполненную из натурального каучука, размещают в парах этого вещества (S2Cl2) или в ее растворе, выполненный на основе какого-либо растворителя. Растворитель должен отвечать двум требованиям:

  1. Он не должен вступать в реакцию с полухлористой серой.
  2. Он должен растворять каучук.

Как правило, в качестве растворителя можно использовать сероуглерод, бензин и ряд других. Наличие полухлористой серы в жидкости не дает каучуку растворяться. Суть этого процесса заключается в насыщении каучука этим химикатом.

Чарльз Гудьир изобрел процесс вулканизации каучука

Чарльз Гудьир изобрел процесс вулканизации каучука

Длительность процесса вулканизации с участием S2Cl2 в результате определяет технические характеристики готового изделия, в том числе эластичность и прочность.

Время вулканизации в 2% — м растворе может составлять несколько секунд или минут. Если процесс будет затянут по времени, то может произойти так называемая перевулканизация, то есть заготовки теряют пластичность и становятся очень хрупкими. Опыт говорит о том, что при толщине изделия порядка одного миллиметра операцию вулканизации можно проводить несколько секунд.

Эта технология вулканизации является оптимальным решением для обработки деталей с тонкой стенкой – трубки, перчатки и пр. Но, в этом случае необходимо строго соблюдать режимы обработки иначе, верхний слой деталей может быть вулканизирован больше, чем внутренние слои.

По окончании операции вулканизации, полученные детали необходимо промыть или водой, или щелочным раствором.

Существует и второй способ холодной вулканизации. Каучуковые заготовки с тонкой стенкой, помещают в атмосферу, насыщенную SO2. Через определенное время, заготовки перемещают в камеру, где закачан H2S (сероводород). Время выдержки заготовок в таких камерах составляет 15 – 25 минут. Этого времени достаточно для завершения вулканизации. Эту технологию с успехом применяют для обработки клееных швов, что придает им высокую прочность.

Специальные каучуки обрабатывают с применением синтетических смол, вулканизация с их использованием не отличается от той, что описана выше.

Горячая вулканизация

Технология такой вулканизации выглядит следующим образом. К отформованной из сырого каучука добавляют определенное количество серы и специальных добавок. Как правило, объем серы должен лежать в диапазоне 5 – 10% конечная цифра определяется исходя из предназначения и твердости будущей детали. Кроме серы, добавляют так называемый роговой каучук (эбонит), содержащий 20 – 50% серы. На следующем этапе происходит формование заготовок из полученного материала и их нагрев, т.е. вулканизация.

Нагрев проводят различными методами. Заготовки помещают в металлические формы или закатывают в ткань. Полученные конструкции укладывают в печь разогретую до 130 – 140 градусов Цельсия. В целях повышения эффективности вулканизации в печи может быть создано избыточное давление.

После вулканизации каучука

После вулканизации каучука

Сформированные заготовки могут быть уложены в автоклав, в котором находиться перегретый водяной пар. Либо их помещают в нагреваемый пресс. По сути, этот метод наиболее распространен на практике.

Свойства каучука прошедшего вулканизацию зависят от множества условий. Именно поэтому вулканизацию относят к самым сложным операциям, применяемым в производстве резины. Кроме того, немаловажную роль играет и качество сырья и метод его предварительной обработки. Нельзя забывать и об объеме добавляемой серы, температуры, продолжительность и метод вулканизации. В конце концов, на свойства готового продукта оказывает и наличие примесей разного происхождения. Действительно наличие многих примесей позволяет выполнить правильную вулканизацию.

В последние годы в резиновой промышленности стали использовать ускорители. Эти вещества добавленные в каучуковую смесь ускоряют протекающие процессы, снижают энергозатраты, другими словами эти добавки оптимизируют обработку заготовки.

При реализации горячей вулканизации на воздухе необходимо присутствие свинцовой окиси, кроме того может потребоваться присутствие свинцовых солей в купе с органическими кислотами или с соединениями которые содержат кислотные гидроокислы.

В качестве ускорителей применяют такие вещества как:

  • тиурамидсульфид;
  • ксантогенаты;
  • меркаптобензотиазол.

Вулканизация, проводимая под воздействием водяного пара может существенно сократиться если использовать такие химические вещества, как щелочи: Са(ОН)2, MgO, NaOH, КОН, или соли Na2CО3, Na2CS3. Кроме того, ускорению процессов поспособствуют соли калия.

Существуют и органические ускорители, это амина, и целая группа соединений, которые не входят в какую-либо группу. Например, это производные от таких веществ как амины, аммиак и ряд других.

На производстве чаще всего применяют дифенилгуанидин, гексаметилентетрамин и многие другие. Не редки случаи, когда для усиления активности ускорителей используют окись цинка.

Читайте так же:
Полимеры используемые в быту

Кроме добавок и ускорителей не последнюю роль играет и окружающая среда. К примеру, наличие атмосферного воздуха создает неблагоприятные условия для проведения вулканизации при стандартном давлении. Кроме воздуха, отрицательное воздействие оказывают угольный ангидрид и азот. Между тем, аммиак или сероводород оказывают положительной воздействие на процесс вулканизации.

Процедура вулканизации придает каучуку новые свойства и модифицирует существующие. В частности, улучшается его эластичность и пр. контролировать процесс вулканизации можно контролировать, постоянно замеряя изменяемые свойства. Как правило, для этого используют определение усилия на разрыв и растяжение на разрыв. Но эти метод контроля не отличаются точностью и его не применяют.

Резина как продукт вулканизации каучука

Техническая резина – это композиционный материал, содержащий в своем составе до 20 компонентов, обеспечивающих различные свойства этого материала. Резину получают путем вулканизации каучука. Как отмечалось выше, в процессе вулканизации происходит образование макромолекул, обеспечивающие эксплуатационные свойства резины, так обеспечивается высокая прочность резины.

Главное отличие резины от множества других материалов тем, что она обладает способностью к эластичным деформациям, которые могут происходить при разных температурах, начиная от комнатной и заканчивая куда более низкими. Резина значительно превышает каучук по ряду характеристик, например, ее отличает эластичность и прочность, стойкость к температурным перепадам, воздействию агрессивных сред и многое другое.

Цемент для вулканизации

Цемент для вулканизации используют для операции самовулканизации, она может начинаться с 18 градусов и для горячей вулканизации до 150 градусов. Этот цемент не включает в свой состав углеводороды. Существует также цемент типа ОТР, используемый для нанесения на шероховатые поверхности внутри шин, а также на Тип Топ RAD- и PN-пластыри серии OTR с увеличенным временем высыхания. Применение такого цемента позволяет достичь длительных сроков эксплуатации восстановленных шин, применяемых на специальной строительной технике с большим пробегом.

Технология горячей вулканизации шин своими руками

Для выполнения горячей вулканизации покрышки или камеры понадобится пресс. Реакция сварки каучука и детали происходит за определенный период времени. Это время зависит от размера ремонтируемого участка. Опыт показывает, что для устранения повреждения глубиной в 1 мм, при соблюдении заданной температуры, потребуется 4 минуты. То есть для ремонта дефекта глубиной в 3 мм, придется затратить 12 минут чистого времени. Подготовительное время в расчет не принимаем. А между тем выведение вулканизационного устройства в режим, в заисимости от модели может занять порядка 1 часа.

Температура, необходимая для проведения горячей вулканизации лежит в пределах от 140 до 150 градусов Цельсия. Для достижения такой температуры нет необходимости в использовании промышленного оборудования. Для самостоятельного ремонта шин вполне допустимо применение домашних электробытовых приборов, к примеру, утюга.

Устранение дефектов автомобильной покрышки или камеры при помощи устройства для вулканизации – это довольно трудоемкая операция. У него существует множество тонкостей и деталей, и поэтому рассмотрим основные этапы ремонта.

  1. Для обеспечения доступа к месту повреждения необходимо покрышку снять с колеса.
  2. Зачистить рядом с местом повреждения резину. Ее поверхность должна стать шероховатой.
  3. С применением сжатого воздуха обдуть обработанное место. Корд, появившийся наружу необходимо удалить, его можно откусить кусачками. Резина должна быть обработана специальным составом для обезжиривания. Обработка должна быть проведена с двух сторон, снаружи и изнутри.
  4. С внутренней стороны, на место повреждения должна быть уложена заранее подготовленная в размер заплатка. Укладку начинают со стороны борта покрышки в сторону центра.
  5. С наружной стороны на место повреждения необходимо положить куски сырой резины, нарезанные на кусочки по 10 – 15 мм, предварительно их необходимо прогреть на плите.
  6. Уложенный каучук надо прижать и разровнять по поверхности шины. При этом надо следить за тем, что бы слой сырой резины был выше рабочей поверхности камеры на 3 – 5 мм.
  7. Через несколько минут, с использование УШМ (угловая шлифмашина), необходимо снять слой наложенной сырой резины. В том случае, если оголенная поверхность рыхлая, то есть в ней присутствует воздух, всю нанесенную резину требуется убрать и операцию нанесения каучука повторить. Если в ремонтном слое нет воздуха, то есть, поверхность ровная и не содержит пор, ремонтируемую деталь, можно отправлять под разогретый до указанной выше температуры.
  8. Для точного расположения шины на прессе имеет смысл пометить центр дефектного места мелом. Для предотвращения прилипания нагретых пластин к резине, между ними надо проложить плотную бумагу.

Вулканизатор своими руками

Любое устройство для горячей вулканизации должно содержать два компонента:

  • нагревательный элемент;
  • пресс.

Для самостоятельного изготовления вулканизатора могут потребоваться:

  • утюг;
  • электрическая плитка;
  • поршень от ДВС.

Вулканизатор, который изготовлен своими руками, необходимо оснастить его регулятором, который сможет его выключить по достижении рабочей температуры (140-150 градусов Цельсия). Для эффективного прижима можно использовать обыкновенную струбцину.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector