Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов

Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.

Тепло — это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта — тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала — например, большинство металлов хорошо проводят тепло, а дерево и пластик — гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой — при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом — таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее — мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

МатериалТеплопроводность, Вт/(м·K)
Алмаз1001—2600
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Оксид алюминия40
Кварц8
Гранит2,4
Бетон сплошной1,75
Базальт1,3
Стекло1-1,15
Термопаста КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Стекловата0,032-0,041
Каменная вата0,034-0,039
Воздух (300 K, 100 кПа)0,022

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата — нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и "всплывает" наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи — это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (

600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая — порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (

1м 2 ) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4 ) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме — именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

Читайте так же:
Сип для уличного освещения марка

Теплопроводность при низких температурах

По мере охлаждения твердого тела теплопроводность кристаллов сильно возрастает. Когда кристалл охлаждается, число волн, переносящих энергию колебательного движения, становится меньше, и можно было бы ожидать уменьшения теплопроводности. Существует, однако, другой эффект, который действует в противоположном направлении. Когда кристалл охлаждается и атомы колеблются слабее, многие волны, в виде которых распространяются колебания, затухают, но зато остальные распространяются на большее расстояние. Увеличение расстояния, проходимого волнами, более чем компенсирует уменьшение набора сохранившихся волн. Таким образом, теплопроводность кристаллов сильно возрастает при охлаждении. В конце концов при очень низких температурах (примерно 40° К) волны проходят через весь кристалл без рассеяния до его границ. Но при абсолютном нуле температуры теплопроводность некоторых кристаллов стремится к нулю, поскольку число волн, переносящих тепло, неуклонно убывает.

Заметим, что при этих низких температурах теплопроводность совершенного кристалла сапфира не хуже, чем у меди. Увеличение расстояния, на которое могут распространяться колебания без рассеяния их энергии, несомненно, очень сильно влияет на свойства кристалла. Теплопроводность стекла по сравнению с теплопроводностью хороших кристаллов слишком мала. Поскольку атомы в стекле не расположены рядами, как в хороших кристаллах, колебательные волны никогда не могут распространяться на большие расстояния, и стекло является плохим проводником тепла при любых температурах.

В металлах волны, в виде которых распространяются колебания, переносят тепловую энергию точно так же, как в неметаллах. Но электроны тоже переносят энергию. Каждый электрон способен переносить примерно столько же энергии, сколько и эти волны, но, так как электроны движутся намного быстрее (в 100 раз), теплопроводность металлов обусловлена в основном электронами.

Однако колебания ионов атомов в металле нельзя совсем не учитывать. При рассмотрении теплопроводности, точно так же как и электропроводности, необходимо иметь в виду, что расстояние, которое способны проходить электроны, ограничивается рассеянием электронов на препятствиях. В кристаллах чистых металлов основные препятствия, на которых рассеиваются электроны, обусловлены колебаниями решетки, приводящими к тому, что атомы не лежат на одной прямой. Когда металл охлаждается и колебания становятся слабее, электроны способны проходить большие расстояния, поэтому теплопроводность металлов возрастает. При достаточно низкой температуре электроны могут проходить через кристаллы небольших размеров, при этом теплопроводность достигает максимума. Дальнейшее охлаждение понижает энергию, которую могут переносить электроны, и при абсолютном нуле температуры теплопроводность кристалла в некоторых случаях стремится к нулю.

Для сравнения показан также график (нету) теплопроводности металла, содержащего очень много примесей, — стали. В этом образце электроны рассеиваются в значительной степени на вкрапленных препятствиях (инородных атомах), так что с температурой число центров рассеяния не меняется. Таким образом, теплопроводность медленно убывает, по мере того как электроны оказываются в состоянии переносить все меньше и меньше энергии. Теплопроводность всех чистых кристаллов, металлических и неметаллических, изменяется в зависимости от температуры почти так же, как у сапфира или меди. При понижении температуры движение атомов становится менее интенсивным и расстояние, на которое распространяются упругие волны и электроны без рассеяния, очень быстро возрастает, поскольку оно ограничивается лишь размерами кристалла. В идеальном кристалле больших размеров при низкой температуре тепло могло бы, по-видимому, распространяться со скоростью, приближающейся к скорости звука.

С другой стороны, в сплаве вроде стали, которая представляет собой кристалл железа, содержащий большое число добавочных атомов углерода, марганца и хрома, электроны рассеиваются такими примесями. Теплопроводность стали невелика при всех температурах. Сходную картину мы наблюдаем в случае стекла. В стекле атомы расположены далеко не в идеальном порядке, и колебания не могут распространяться в виде волн на большие расстояния ни при какой температуре. Поэтому теплопроводность стекла и пластиков слишком мала, чтобы ее можно было представить на графике. Эта огромная разница в теплопроводностях между хорошими кристаллами и твердыми телами с неупорядоченной структурой является следствием высокой степени упорядоченности, возможной в природе, когда вечно движущиеся атомы и электроны образуют в своем расположении длинные правильные ряды.

Теплопроводность чистых металлов

Таблица теплопроводности металлов

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Читайте так же:
Фигурное выпиливание электролобзиком рисунки и схемы

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Таблица теплопроводности металлов в зависимости от температуры

Примечание: В таблице также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

Добавить комментарий Отменить ответ

Теплопроводность материалов и стройматериалов

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды и свойства воды теплопроводность

Плотность воды, теплопроводность и физические свойства H2O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

свойства воздуха: плотность, вязкость, энтропия, теплоемкость

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна, теплофизические свойства

Теплопроводность стали и чугуна. Теплофизические свойства стали

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Тепловые, механические, оптические и электрические характеристики оргстекла

Оргстекло: тепловые и механические характеристики

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Удельное электрическое сопротивление стали при различных температурах

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Теплопроводность магниевых сплавов - таблица

Теплопроводность магниевых сплавов. Свойства сплава магнокс

Теплопроводность магниевых сплавов и теплофизические свойства сплава магнокс при различных температурах…

Плотность грунтов - таблица плотности

Плотность грунта

В таблице представлена плотность грунта в естественном залегании в размерности кг/м3. Плотность приведена с учетом…

Теплофизические свойства дымовых газов

Теплопроводность дымовых газов, теплофизические свойства продуктов сгорания топлива

Дымовые газы представляют собой смесь выхлопных, отходящих газов, продуктов горения топлива. В таблице представлены следующие теплофизические…

Свойства шоколада и какао, температура кипения шоколада

Теплофизические свойства шоколада при различных температурах В таблице представлены теплофизические свойства шоколада при различных температурах. Свойства…

Свойства газов метанового ряда

Плотность метана. Свойства газов метанового ряда CnH2n+2

В таблице указана плотность метана при различных температурах, включая плотность этого газа при нормальных условиях…

Свойства оксида урана, КТР закиси-окиси

Теплофизические свойства диоксида урана UO2 теоретической плотности Даны свойства оксида урана UO2 теоретической плотности, который применяется в качестве…

Свойства сливочного масла

В этой статье рассмотрены значения таких теплофизических свойств сливочного масла, как теплопроводность, теплоемкость и температуропроводность…

Плотность льда и снега, теплопроводность, теплоемкость льда

Плотность, теплопроводность и теплоемкость льда в зависимости от температуры В таблице приведены значения плотности, теплопроводности,…

Удельное электрическое сопротивление стали при различных температурах

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Медь и другие металлы на нашей кухне — сравнительный анализ

Преимущества: прочная, красивая, мало поддающаяся коррозии, удобная.

Неудобства: Низкая теплопроводность. Именно поэтому посуду из нержавеющей стали в первую очередь используют для кипячения. Во всех иных случаях при готовке в такой посуде потребление электроэнергии (если у вас электрическая плита) либо газа сильно возрастет. Кухонная утварь из нержавеющей стали может быть безнадежно испорчена при применении обычной пищевой соли.

Если посуду из нержавеющей стали поставить на рабочую поверхность плиты с неравным распределением температуры, содержащаяся в такой посуде пища обязательно подгорит, а сам металл начнет вступать в нежелательные химические реакции с участием входящего в него хрома и никеля.

Внимание: кухонная утварь из нержавеющей стали пользуется высоким спросом из-за того, что ее легко мыть и полировать. Однако во время данного процесса на посуде образуется множество микротрещин, в которые легко проникают и задерживаются различные вредные вещества. Исследователь Билл Кевил из Саутгемптонского университета провел исследование, в ходе которого доказал, что подобные изменения не происходят с предметами, выполненными из меди, а вот нержавеющая сталь подвержена коррозии. В частности, бактерия E.Coli (опасная для нашего здоровья кишечная палочка), попавшая на нержавеющую сталь, благополучно существует на ней на протяжении нескольких месяцев, в то время, как на медных поверхностях она самопроизвольно гибнет через 14 часов.

Читайте так же:
Что такое вышка тура строительная
Серебро

Преимущества: Крайне высокая, можно сказать, рекордная теплопроводность, позволяющая сберечь максимальное количество энергии, антипригарные свойства, очень красивый внешний вид.

Неудобства: серебро — очень дорогой материал, требующий особого ухода и внимания. Повара полагают, что высокая теплопроводность не окупает времени и сил, затраченных на уход за посудой, выполненной из этого материала.

Чугун

Преимущества: очень износостойкий и прочный материал, который прослужит много лет. Сохраняет высокую температуру в течение долгого времени, независимо от срока использования чугунной посуды. Новая чугунная сковорода обладает такой же теплопроводностью, как и старая. Чугун равномерно распределяет высокую температуру, что позволяет использовать изготовленную из него посуду для приготовления блюд, которые нужно долго держать на медленном огне.

Неудобства: плохая теплопроводность. Кастрюля или сковородка из чугуна довольно быстро нагревается и очень медленно остывает. У чугуна очень большой вес. Чугунные кастрюли и сковородки с плохо обработанной поверхностью (как вариант — с эмалированной поверхностью, поврежденной при очень высокой температуре) позволяют пище подгорать и прилипать.

Многослойные сплавы

Новейшие инновационные технологии привели к созданию кухонной посуды, выполненной из нескольких слоев различных металлов, положительные качества каждого из которых максимально активизированы, а отрицательные – минимизированы. Дать точную оценку их теплопроводности невозможно из-за того, что сейчас на потребительском рынке встречается посуда, выполненная из самых разных сплавов. Данная современная технология позволяет создать самую разную посуду такого типа.

Часть кухонной утвари, выполненной из многослойных сплавов, действительно обладает крайне важными с точки зрения кулинарии свойствами, а часть, к сожалению, изготовлена исключительно с учетом коммерческого спроса на данный продукт.

Вот список наиболее распространенных многослойных сплавов:
• 10% нержавеющей стали, 80% алюминия, 10% нержавеющей стали. В результате такого сочетания теплопроводность стали резко повышается.
• 90% алюминия, 10% нержавеющей стали. Такой сплав обладает всеми преимуществами, связанными с отличной теплопроводностью алюминия, но не допускает его негативных реакций с компонентами готовящейся пищи.
• 10% меди, 80% алюминия, 10% нержавеющей стали. К сожалению, медь практически не влияет на теплопроводность, зато требует больше времени на свою очистку.
• 90% меди, 10% нержавеющей стали. Подобный сплав слегка снижает преимущества, которые есть у утвари, изготовленной исключительно из меди, зато подобная посуда куда практичнее.
• 10% меди, 90% алюминия — медь также практически не влияет на теплопроводность, зато требует больше времени на свою очистку
• 10% меди, 90% алюминия плюс антипригарное покрытие. Как и в предыдущем случае, медь требует больше времени на свою очистку, при этом неизбежное трение, возникающее при данном процессе, безвозвратно повреждает предмет.

Преимущества: высокая теплопроводность. Это позволяет готовить пищу в медной посуде при более низкой температуре и уменьшает ее перегрев и расход энергии. Данные свойства меди особенно важны для нескольких разделов кулинарии, в том числе – изготовления соусов и карамели. Посуда, изготовленная из меди, выигрышно смотрится как на вашей кухне, так и на вашем столе. Кроме того, она чрезвычайно стойка к различного рода бактериям и прослужит вам очень долго.

Недостатки: посуда из меди достаточно дорога. Она имеет весьма большой вес и требует особого ухода. В ней категорически не рекомендуется готовить определенные блюда, которые могут вызвать реакцию окисления. Кроме того, медную утварь запрещено мыть в посудомоечной машине.

Примечания: медь широко используется в молочной промышленности. Речь идет не только об аппаратуре, в которой применяются детали, выполненные из этого материала, но и об участии этого металла в различных пищевых процессах. Химические свойства меди позволяют использовать ее для дистилляции. Определенные качества меди делают ее просто незаменимой в области консервирования, поскольку именно она помогает обрабатываемым овощам и фруктам сохранить их натуральный цвет, вкус и аромат. Медный котел или перегонный куб — неотъемлемая составляющая при производстве сыров Грана Падано и Пармезан, а также таких всемирно известных напитков, как коньяк и арманьяк.

Медь подлежит переработке, которая не наносит ущерба экологии нашей планеты, поскольку при данном процессе металл не выделяет какие-либо вредные вещества и перерабатывается целиком. Подобная переработка меди сокращает затраты на ее добычу. Считается, что примерно 80 % меди, добытой еще в античные времена, до сих пор используется человечеством: разумеется, за это время «древняя» медь была переработана бесчисленное количество раз.

Читайте так же:
Обучение на инженера электрика дистанционно

Влияние меди на здоровье: Люди и животные постоянно поглощают медь на протяжении всей своей жизни. Будучи природным материалом, медь содержится во многих продуктах и в воде. Определенное количество меди необходимо нам для того, чтобы мы чувствовали себя хорошо. Переизбыток меди вымывается из нашего организма естественным путем.

Теплоемкость и теплопроводность металлов и сплавов

Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины теплопроводности зависит возможность появления трещин в металле. Если теплопроводность низкая, то риск возникновения трещин увеличивается. Так, легированные стали имеют теплопроводность, которая в пять раз меньше, чем теплопроводность меди и алюминия. Размер теплоемкости влияет на уровень расходуемого топлива на нагрев заготовки до определенной температуры.

У металлических сплавов удельная теплоемкость находится в пределах 100-2000 Дж/(кг*К). У большинства металлов теплоемкость составляет 300–400 Дж/(кг*К). Теплоемкость металлических материалов растет с повышением температуры. Полимерные материалы, как правило, имеют удельную теплоемкость 1000 Дж/(кг·К) и более.

Электрические свойства материалов характеризуются наличием носителей зарядов электронов или ионов и свободой их передвижения под действием электрического поля.

Высокие энергии ковалентной и ионной связи сообщают материалам с этими типами связи свойства диэлектрика. Их слабая электрическая проводимость обусловлена влиянием примесей, причем под влиянием влаги, образующей с примесями проводящие растворы, электропроводность таких материалов возрастает.

Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления: у металлов он положителен, у материалов с ковалентным и ионным типом связи – отрицателен. При нагреве металлов концентрация носителей зарядов – электронов не увеличивается, а сопротивление их движению возрастает из-за увеличения амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов.

Теплопроводностью называется перенос тепловой энергии в твердых телах, жидкостях и газах при макроскопической неподвижности частиц. Перенос теплоты происходит от более горячих частиц к холодным и подчиняется закону Фурье.

Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала. Теплота в твердых телах переносится электронами и фононами.

Механизм передачи теплоты, в первую очередь, определяется типом связи: в металлах теплоту переносят электроны; в материалах с ковалентным или ионным типом связи – фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность17б осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят теплоту, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление. Кристаллическая решетка создает периодическое энергетическое пространство, в котором передача теплоты электронами или фононами облегчена по сравнению с аморфным состоянием.

Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Чем больше размеры зерен, тем выше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом – основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.

Графит имеет высокую теплопроводность. При передаче теплоты параллельно слоям атомов углерода базисной плоскости теплопроводность графита превышает теплопроводность меди более чем в 2 раза

Разветвленные пластины графита в сером чугуне имеют структуру монокристалла, и поэтому он имеет высокую теплопроводность. Высокопрочный чугун с шаровидным графитом при той же объемной доле графита имеет теплопроводность 25…40 Вт/м*К, что почти вдвое меньше по сравнению с серым чугуном.

При нагреве теплопроводности сталей разных классов сближаются. Стекло имеет низкую теплопроводность. Полимерные материалы плохо проводят теплоту, теплопроводность большинства термопластов не превышает 1,5 Вт/(мОК).

Теплопроводность может меняться также, как и электропроводность в случае, если электронная теплопроводность металла составляет l e. Тогда любые изменения, происходящие в химическом и фазовом составе и структуре сплава влияют на теплопроводность также, как и на электропроводность (по правилу Видемана-Франца).

Читайте так же:
Циклонный фильтр в пылесосе плюсы и минусы

При отдалении состава сплава от чистых компонентов происходит понижение теплопроводности. Исключение составляют, например, медно-никелевые сплавы, в которых происходят обратные явления.

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения

Дилатометрия – раздел физики; основная задача: изучение влияния внешних условий (температуры, давления, электрического, магнитного полей, ионизирующих излучений) на размеры тел. Главный предмет изучения: тепловое расширение тел и возникающие при этом аномалии.

Дилатометрический метод. При нагреве металлов и сплавов происходит изменение объема и линейных размеров тела – тепловое расширение. Если эти изменения обусловлены только увеличением энергии колебаний атомов вследствие повышения температуры, то при возвращении температуры к прежнему уровню восстанавливаются и исходные размеры тела. Если же в теле при нагреве (или охлаждении) происходят фазовые превращения, то изменения размеров могут быть необратимыми. Изменения размеров тел, связанные с нагревом и охлаждением, изучают на специальных приборах – дилатометрах.

Дилатометрический метод – это метод, при помощи которого определяются критические точки металлов и сплавов, изучаются процессы распада твердых растворов, а также устанавливаются температурные интервалы существования упрочняющих фаз. Достоинство этих приборов – высокая чувствительность и независимость показаний от скорости изменения температуры.

Высокую чувствительность электрических методов измерения широко используют при исследовании фазовых превращений, дефектов тонкой структуры и других явлений, происходящих в металлах и сплавах, которые невозможно изучать другими методами исследования. Электрическое сопротивление измеряют с помощью различных мостовых схем, а также компенсационными методами. Различные способы магнитного анализа используют при исследовании процессов, связанных с переходом из парамагнитного состояния в ферромагнитное (или наоборот), причем возможна количественная оценка этих процессов. Магнитный анализ широко применяют при решении задач практического металловедения, например, таких, как исследование влияния на структуру режимов термической обработки, деформации, легирования. Возможно использование магнитного анализа и для решения некоторых более сложных задач физического металловедения.

Метод внутреннего трения основан на изучении необратимых потерь энергии механических колебаний внутри твердого тела. Используя этот метод, можно рассчитать коэффициенты диффузии с высокой точностью, в том числе и при низких температурах, где никакой другой метод неприменим; определять изменение концентрации твердых растворов; распределение примесей; получить информацию о фазовых и полиморфных превращениях и изменениях дислокационной структуры.

Магнитотвердые стали и сплавы применяют для изготовления постоянных магнитов. Для постоянных магнитов применяют высокоуглеродистые стали с 1 % С, легированные хромом (3 %) ЕХ3, а также одновременно хромом и кобальтом, ЕХ5К5, ЕХ9К15М2. Легирующие элементы повышают коэрцитивную и магнитную энергию.

В промышленности широкое применение получили сплавы типа алнико. Сплавы тверды, хрупки и не поддаются деформации, поэтому магниты из них изготовляют литьем, затем проводят шлифование.

Материалы делятся на диамагнетики, парамагнетики и ферромагнетики в зависимости от того, какова степень их магнитной восприимчивости и каков их знак.

Диамагнетики имеют отрицательную магнитную восприимчивость. Их намагничивание направлено противоположно приложенному магнитному полю. Это приводит к ослаблению данного поля. Диамагнетиками являются полупроводники (Si, Ge), диэлектрики (полимеры), некоторые непереходные металлы (Be, Cu, Ag, Pb).

Парамагнетики обладают низкой намагниченностью, которая возникает под воздействием внешнего поля. Парамагнетиками являются K, Na, Al и переходные металлы Mo, W, Ti.

Феромагнетики отличаются высокой магнитной восприимчивостью. К ним относятся: железо, кобальт, никель и гадолиний. Характеристики: остаточная индукция Вг, коэрцитивная сила Нс и магнитная проницаемость м = В/Н.

Остаточная индукция – магнитная индукция, которая остается в образце в результате его намагничивания и дальнейшего размагничивания.

Коэрцитивная сила – напряженность магнитного поля обратного знака, прилагаемая к образцу с целью его размагничивания.

Магнитная проницаемость является основной характеристикой интенсивности намагничивания. Определив тангенс угла наклона к первичной кривой намагничивания В = f(H), можно высчитать магнитную проницаемость. Сплав ЮНДК15 содержит 18–19 % Ni, 8.5–9.5 % Al, 14–15 % Co, 3–4% Cu.

Магнитомягкие стали (электротехническая сталь) (1212, 1311, 1511, 2011, 2013, 2211, 2312, 2412, 3415, 3416, 79НМ, 81НМА) применяютдля изготовления магнитопроводов постоянного и переменного тока. Они предназначены для изготовления якорей и полюсов машин постоянного тока, роторов и статоров асинхронных двигателей и др.

Парамагнитные стали (17Х18Н9, 12Х18Н10Т, 55Г9Н9Х3, 40Г14Н9Ф2, 40Х14Н9Х3ЮФ2 и др.) требуются в электротехнике, приборостроении, судостроении и специальных областях техники.

Недостаток этих сталей – низкий предел текучести (150-350МПа), что затрудняет их использование для высоко нагруженных деталей машин.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector