Montagpena.ru

Строительство и Монтаж
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

О теплопроводности меди и ее сплавов

О теплопроводности меди и ее сплавов

Высокая теплопроводность меди и другие ее полезные характеристики послужили одной из причин раннего освоения этого металла человеком. И по сей день медь и медные сплавы находят применение почти во всех областях нашей жизни.

Медные пластины

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.

Медная проволока

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.

Медный радиатор отопления

Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Алюминий и медь – что лучше?

У алюминия есть один минус по сравнению с медью: его теплопроводность в 1,5 раза меньше, а именно 201–235 Вт/(м*К). Однако по сравнению с другими металлами это достаточно высокие значения. Алюминий так же, как и медь, обладает высокими антикоррозийными свойствами. Кроме того, он имеет такие преимущества, как:

  • малая плотность (удельный вес в 3 раза меньше, чем у меди);
  • низкая стоимость (в 3,5 раза меньше, чем у меди).

Алюминиевый радиатор отопления

Алюминиевый радиатор отопления

Благодаря простым расчетам получается, что алюминиевая деталь может оказаться дешевле медной практически в 10 раз, ведь она весит намного меньше и изготовлена из более дешевого материала. Этот факт наряду с высокой теплопроводностью позволяет использовать алюминий в качестве материала для посуды и пищевой фольги для духовых шкафов. Главный недостаток алюминия состоит в том, что он является более мягким, поэтому его можно использовать только в составе сплавов (например, дюралюминия).

Для эффективного теплообмена важную роль играет скорость отдачи тепла в окружающую среду, и этому активно способствует обдув радиаторов. В результате меньшая теплопроводность алюминия (относительно меди) нивелируется, а вес и стоимость оборудования снижаются. Эти важные плюсы позволяют алюминию постепенно вытеснять медь из использования в системах кондиционирования.

Использование меди в электронике

Использование меди в электронике

В некоторых отраслях, к примеру, в радиопромышленности и электронике, медь является незаменимой. Дело в том, что этот металл по природе своей очень пластичен: его можно вытянуть крайне тонкую проволоку (0,005 мм), а также создать другие специфические токопроводящие элементы для электронных приборов. А высокая теплопроводность позволяет меди крайне эффективно отводить неизбежно возникающее при работе электроприборов тепло, что очень важно для современной высокоточной, но в то же время компактной техники.

Читайте так же:
Самодельные резцы по дереву для ручной работы

Актуально использование меди в тех случаях, когда требуется сделать наплавку определенной формы на стальную деталь. При этом применяется шаблон из меди, который не соединяется с привариваемым элементом. Использование алюминия для этих целей невозможно, так как он будет расплавлен или прожжен. Стоит также упомянуть, что медь способна выполнить роль катода при сварке угольной дугой.

1 - шестерня, 2 - крепления шаблонов, 3 - наплавляемый зуб шестерни, 4 - медные шаблоны

1 — шестерня, 2 — крепления шаблонов, 3 — наплавляемый зуб шестерни, 4 — медные шаблоны

Недостатки высокой теплопроводности меди и ее сплавов

Медь обладает куда более высокой стоимостью, чем латунь или алюминий. При этом у данного металла есть свои недостатки, напрямую связанные с его достоинствами. Высокая теплопроводность приводит к необходимости создавать специальные условия во время резки, сварки и пайки медных элементов. Так как нагревать медные элементы нужно намного более концентрировано по сравнению со сталью. Также часто требуется предварительный и сопутствующий подогрев детали.

Не стоит забывать и о том, что медные трубы требуют тщательной изоляции в том случае, если из них состоит магистраль или разводка системы отопления. Что приводит к увеличению стоимости монтажа сети в сравнении с вариантами, когда применяются другие материалы.

Пример теплоизоляции медных труб

Пример теплоизоляции медных труб

Следует сказать и о необходимости использования специальных инструментов. Так, для резки латуни и бронзы толщиной до 15 см понадобится резак, способный работать с высокохромистой сталью толщиной в 30 см. Причем этого же инструмента хватит для работы с чистой медью толщиной всего лишь в 5 см.

Плазменная резка меди

Плазменная резка меди

Можно ли повысить теплопроводность меди?

Медь широко используется при создании микросхем электронных устройств и призвана отводить тепло от нагреваемых электрическим током деталей. При попытке увеличить быстродействие современных компьютеров разработчики столкнулись с проблемой охлаждения процессоров и других деталей. В качестве одного из решений применялся вариант разбиения процессора на несколько ядер. Однако данный способ борьбы с перегревом себя исчерпал, и сейчас требуется искать новые проводники с более высокой теплопроводностью и электропроводимостью.

МЕТАЛЛЫ

МЕТАЛЛЫ — (от греч. metallon, первоначально шахта, руда, копи), простые в ва, обладающие в обычных условиях характерными св вами: высокими электропроводностью и теплопроводностью, отрицательным температурным коэфф. электропроводности, способностью хорошо… … Физическая энциклопедия

МЕТАЛЛЫ — МЕТАЛЛЫ, простые вещества, обладающие в обычных условиях характерными свойствами высокой электропроводностью (106 104 Ом 1?см 1), уменьшающейся с ростом температуры, высокой теплопроводностью, блеском, пластичностью, ковкостью и др. Свойства… … Современная энциклопедия

Металлы — МЕТАЛЛЫ, простые вещества, обладающие в обычных условиях характерными свойствами высокой электропроводностью (106 104 Ом 1´см 1), уменьшающейся с ростом температуры, высокой теплопроводностью, блеском, пластичностью, ковкостью и др. Свойства… … Иллюстрированный энциклопедический словарь

МЕТАЛЛЫ — (греч.) вещества, обладающие в обычных условиях высокими электропроводностью (106 107 Ом 1 см 1, уменьшается с ростом температуры) и теплопроводностью, ковкостью, металлическим блеском и др. свойствами, обусловленными наличием в их… … Большой Энциклопедический словарь

металлы — Простые вещ ва, обладающие в обычных условиях хар рными св вами: высокой электро и теплопроводностью, отрицат. темп рным коэфф. электропроводности, способностью хорошо отражать электромагн. волны, пластичностью. М. В. Ломоносов определял м. как… … Справочник технического переводчика

Металлы — ассоциируются: золото с Солнцем, серебро с Луной, свинец с Сатурном, олово с Юпитером, железо с Марсом, ртуть с Меркурием, медь или латунь с Венерой. Металлы неблагородные олицетворяют чувственный мир человека невозрожденного, а золото… … Словарь символов

Металлы — и металлоиды (хим.). М. называется группа простых тел,обладающих известными характерными свойствами, которые в типичныхпредставителях резко отличают М. от других химических элементов. Вфизическом отношении это по большей части тела твердые при… … Энциклопедия Брокгауза и Ефрона

Читайте так же:
Припой для чего используется

МЕТАЛЛЫ — МЕТАЛЛЫ, простые хим. вещества (элементы), обладающие комплексом характерных, б. или м. ясно выраженных физ. признаков, создающих благоприятные условия для их практического применения, как то: твердость, ковкость, специфический блеск, высокий уд … Большая медицинская энциклопедия

МЕТАЛЛЫ — хим. элементы, доля которых в периодической системе элементов Менделеева составляет примерно 4/5; образует в свободном состоянии простые (см.) с металлической хим. связью. В природе М. встречаются в виде руд, реже в самородном состоянии. В… … Большая политехническая энциклопедия

МЕТАЛЛЫ — в качестве элемента мифопоэтической системы М. могут функционировать в нескольких аспектах. Иногда (обычно в более поздних традициях) они образуют особый «металлический» код из 3 7 единиц, соотносимых с соответствующими единицами других… … Энциклопедия мифологии

Металл с самой высокой теплопроводностью

Сложно переоценить пользу металлов в развитии человечества. Современное строительство, промышленность и другие виды жизнедеятельности невозможно представить без использования металлов. Именно по производству и использованию металлов можно судить об уровне технического прогресса любой страны. Металлургическая промышленность является одним из значимых показателей в экономике любой страны. Фирма «МЕРКАБИ» использует для производства и продажи металлопроката в Москве самые различные виды металла, подбирая их, в зависимости от требований заказчика и функциональной принадлежности готового изделия.
Из более, чем ста известных на сегодня химических элементов большая часть среди них являются металлами. Их можно встретить в составе различных соединений самых разнообразных мест окружающего мира – в атмосфере, земной коре, воде, в недрах земли. Кроме этого, некоторые металлы входят в состав тел людей, животных, а также растений.
Металлы отличаются от веществ другого типа несколькими свойствами. Прежде всего, любой металл имеет более плотную кристаллическую структуру, а также высокую теплопроводность и электрическую проводимость, которая уменьшается при нагревании металла. Внешне любой металл можно определить по особому блеску, свойственному только этим веществам. Кроме этого, все металлы отличаются тем, что они легко отдают электроны в процессе химических реакций, могут образовывать сплавы, а также ковки и тягучи.
Металлический блеск, свойственный всем группам и видам металлов, возникает вследствие их способности отражать лучи света. Однако данный блеск возникает далеко не всегда, а только в тех случаях, когда металл представляет собой сплошную массу, а не порошок. Единственными исключениями выступают магний и алюминий, которые способны сохранять характерный для металлов блеск, даже будучи раздробленными и превращенными в порошок, хотя в этом состоянии большинство металлов характеризуются черным или темно-серым цветом.
Любые металлы отличаются высокой тепло- и электропроводностью, и если расположить их по порядку, в зависимости от увеличения способности проведения тока или тепла, то получится два идентичных списка. Самой высокой способностью проведения тепла и тока отличаются серебро и медь, самой низкой – свинец и ртуть.
Одним из важнейших свойств металлов, которые играют очень значимую роль для использования их в промышленности и строительстве, является их механическая деформируемость. Благодаря этому, из них можно изготавливать различные виды металлопроката и другие изделия.
Все физические свойства, которыми характеризуются металлы, связаны с особенностями их внутренней структуры. Вследствие того, что электроны атомов металла, не обладают сильной связью с атомами и постоянно переходят от одного атома к другому, воздействие на них посредством минимальной разницы потенциалов приводит к тому, что электроны начинают перемещаться в одном направлении, образуя электрический ток.
Именно возможность свободного перемещения электронов приводит к тому, что металлы характеризуются особенно высокой теплопроводностью, так как постоянное движение электронов приводит к тому, что они беспрерывно сталкиваются с ионами, обмениваясь энергией с ними. В результате этого температура всей массы металла быстро выравнивается и она принимает одинаковую температуру.
Специалисты фирмы «МЕРКАБИ» владеют всей необходимой информацией о металлах и их свойствах, для того чтобы производимый металлопрокат отличался наиболее высоким качеством.

Читайте так же:
Чем отличается кромочный фрезер от обычного

Почему металлические предметы всегда прохладные на ощупь, даже если находятся в теплом помещении?

Вспомните, насколько горячей кажется ложка в чашке горячего чая. Деревянная ложка, даже если ее нагреть до той же температуры, не будет казаться столь горячей.

Все дело в высокой теплопроводности металла. Температура тела 36,6°C (правда, верхние слои кожи немного холоднее). Если прикоснуться к более холодному предмету, тепло начнет перетекать в него. Температура вблизи поверхности кожи снизится, и мы почувствуем прохладу (или сильный холод, если контраст велик).

Отдаваемое нашим телом тепло нагревает верхние слои холодного предмета. Но если он обладает высокой теплопроводностью (как металл), то энергия быстро растекается по всему объему, рост температуры оказывается незначительным, и перетекание тепла продолжается — мы чувствуем, что предмет остается холодным.

При низкой теплопроводности (как у дерева) внешние слои прогреваются очень быстро — иногда так быстро, что мы даже не обращаем внимания на то, что несколько секунд предмет кажется чуть прохладным. После этого теплоотдача почти останавливается, и мы чувствуем, что предмет согрелся.

С горячими предметами всё обстоит с точностью до наоборот.

Высокая теплопроводность металлов объясняется наличием в них свободных электронов — тех самых, что обеспечивают электропроводность металлов. Электроны в металлах в отличие от атомов не остаются на месте, а быстро перемещаются по всему объему, перенося при этом тепло.

Батарей alt=»|» />11.05.2011 alt=»|» />09:02 Ответить
Vladimir_V >Батарей |19.07.2012 |17:26 Ответить
taras >Vladimir_V |10.10.2017 |12:32 Ответить
taras >Батарей |10.10.2017 |12:31 Ответить
aif alt=»|» />18.05.2011 alt=»|» />14:44 Ответить
TutorState.com alt=»|» />01.07.2011 alt=»|» />01:40 Ответить
silly_sad alt=»|» />16.09.2011 alt=»|» />11:52 Ответить

вообще рубрика гениальная.
но этот ответ мне категорически не понравился — его способен понять только тот (кто уже знает о теплопроводности (додумать то (чего автор стыдливо умалчивает) (типо так станет понятнее детем. ага!)))

а вообще типовое отношение к детям.
и никаких им картинок не доросли ещё!

хотя теплопроводность вполне объяснима на пальцах

taras >silly_sad |10.10.2017 |12:59 Ответить
taras >silly_sad |10.10.2017 |13:01 Ответить
Neznayka alt=»|» />29.03.2012 alt=»|» />15:18 Ответить

Извиняюсь, но последний комментарий ниочем, а ответ TutorState.com не отвечает на вопрос первого.

Согласен с silly_sad, очень даже непонятно многое, не то что детям.

belyvil alt=»|» />09.09.2012 alt=»|» />22:27 Ответить
taras >belyvil |10.10.2017 |13:03 Ответить
balexei alt=»|» />19.10.2012 alt=»|» />22:45 Ответить
Q33NY alt=»|» />03.03.2013 alt=»|» />17:31 Ответить
роткив >Q33NY |21.06.2014 |22:16 Ответить
taras >Q33NY |10.10.2017 |13:09 Ответить
T_Im alt=»|» />12.05.2017 alt=»|» />23:56 Ответить
taras >T_Im |10.10.2017 |13:16 Ответить
taras alt=»|» />10.10.2017 alt=»|» />12:19 Ответить
f_const alt=»|» />20.11.2017 alt=»|» />09:32 Ответить

Значение имеет не только теплопроводность, но и теплоемкость, они в этом процессе на равных правах. На всякий случай приведу здесь точный результат, а уж как его объяснять детям — это отдельный вопрос. Пусть два тела с разной теплоемкостью, теплопроводностью и температурой приходят в соприкосновение по плоской поверхности. В точке контакта температура принимает значение, равное среднему взвешенному из температур тел, причем веса равны корням из произведений теплоемкости на теплопроводность. Т.е., если у нас есть тело с высокой теплопроводностью, но низкой теплоемкостью, оно тоже может быть на ощупь теплым. Температура точки контакта далее не меняется (если теплопроводности и теплоемкости постоянны, не зависят ни от температуры, ни от координаты). Это можно вывести качественным способом: на границе тел образуется своего рода общий тепловой резервуар, в котором температура близка к однородной, причем этот резервуар распространяется вглубь тел на глубины порядка корня из температуропроводности (это теплопров. деленная на теплоемкость), умноженной на время контакта. Складывая внутренние энергии частей резервуара, относящихся к разным телам, и деля на суммарную их теплоемкость, мы как раз и получим то, что написано выше.

Читайте так же:
Перевод нв в hrc таблица

Интересно, что температура точки контакта со временем не меняется.
То, что мы, прикасаясь к холодному предмету, со временем перестаем чувствовать холод — это следствие дополнительных факторов: конечности размера предмета (часть теплового резервуара со стороны предмета в конце концов не сможет дальше расширяться, т.е. предмет, грубо говоря, уже весь прогрелся), переноса тепла кровью (тепловой резервуар со стороны нашего тела достиг области, где перенос тепла уже не чисто теплопроводностью) или попросту снижения нервной реакции.
Интересны варианты с переменной по глубине теплопроводностью. Тот же ход размышлений приведет нас к тому, что температура точки контакта будет меняться в зависимости от того, какие области со временем включаются в тепловой резервуар. Здесь можно привести такие наглядные примеры. Если мы берем в руки кусок фольгированной теплоизоляции при комнатной температуре и ниже, мы сначала ощущаем холод — очень недолго, доли секунды, а потом — тепло. Можно сделать и наоборот — например, накрыть на холоде металлический предмет нетолстой тканью. Сначала будем ощущать слабую прохладу, со временем — более сильный холод.

Коэффициенты теплопроводности различных материалов, таблица

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Название материала, плотностьКоэффициент теплопроводности
в сухом
состоянии
при нормальной
влажности
при повышенной
влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом
состоянии
При нормальной
влажности
При повышенной
влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector