Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Металл титан

Металл титан

В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10 -8 до 80·10 -6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства

Свойство

Титан
Атомный номер

22
Атомная масса

47,00
Плотность при 20°С, г/cм 3

4,505
Температура плавления, °С

1668
Температура кипения, °С

3260
Скрытая теплота плавления, Дж/г

358
Скрытая теплота испарения, кДж/г

8,97
Теплота плавления, кДж/моль18,8
Теплота испарения, кДж/моль422,6
Молярный объем, см³/моль10,6
Удельная теплоемкость при 20°С, кДж/(кг·°С)

0,54
Удельная теплопроводность при 20°С, Вт/(м·К)

18,85
Коэффициент линейного термического расширения при 25°С, 10 -6 м/мК

8,15
Удельное электросопротивление при 20°С, Ом·см·10 -6

45
Модуль нормальной упругости, гПа

112
Модуль сдвига, гПа

41
Коэффициент Пуассона

0,32
Твердость, НВ130. 150
Цвет искрыОслепительно-белый длинный насыщенный пучок искр
Группа металловТугоплавкий, легкий металл

Химические свойства

Свойство

Титан
Ковалентный радиус:

132 пм
Радиус иона:

(+4e) 68 (+2e) 94 пм
Электроотрицательность (по Полингу):

1,54
Электродный потенциал:

— 1,63
Степени окисления:

2, 3, 4

Марки титана и сплавов

Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.

В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.

Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.

Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.

Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.

Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

Достоинства / недостатки

    Достоинства:
  • малая плотность (4500 кг/м 3 ) способствует уменьшению массы выпускаемых изделий;
  • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
  • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
    Недостатки:
  • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
  • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
  • трудности вовлечения в производство титановых отходов;
  • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
  • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
  • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
  • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Области применения

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.

Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Титан

Титан — один из самых распространенных на Земле металлов, его содержание в земной коре примерно 0,57 %. Его название совпадает с именем самого холодного спутника Сатурна.

Титан — это магический металл Водолея. В нем присутствуют все силы, что имеются в Водолее: и Сатурн, и Уран. Именно титановые кольца необходимо носить астрологам в качестве профессионального оберега на счастливой руке, то есть на правой руке — мужчинам и на левой руке — женщинам. Также титан поможет пробудить и поддержать способность изобретать новое, то есть это металл гениальности, новшеств, контактов с будущим, озарений. Сейчас достаточно много ювелирных фирм делают красивые кольца из титана.

Титан — это уникальный металл будущего — он вдвое легче железа и в 6 раз прочнее алюминия. Его цвет серебристо-белый, плавится он при 1665°С, кипит при 3227°С. Металл этот — 22-й элемент таблицы Менделеева, названный в честь героев греческих мифов титаном. *

Титан обычно применяется в аэрокосмической сфере, медицине и при изготовлении оружия. Инертные свойства металла и его поразительная твердость послужили причиной его использования при производстве протезов и вооружения, в ювелирном деле и в космосе. Титановые кольца — вечные, они не «похудеют» от трения и не погнутся. И вновь виной уникальные свойства металла — а точнее, его поразительная твердость. Этому веществу не страшно ничего — оно чувствует себя комфортно и на пальце невесты, и в двигателе самолета A380, с той лишь разницей, что на кольцо уходит несколько граммов, а на двигатель самолета — около 11 тонн титана. Титановые кольца абсолютно не вызывают аллергию, поэтому приобретая такое кольцо, можно быть уверенным в том, что кольца переживут не только своих владельцев, но и много поколений их потомков. Титановые кольца не потускнеют, не заржавеют и не окрасят ваш палец в зеленый цвет. Драгоценные металлы склонны меняться в цвете с течением времени. А порой оставляют непривлекательные следы на коже. Титан же, оправдывая звание инертного металла, не вступает в химические реакции и сохраняет первозданный вид столетиями. Кстати, именно из титана выполнен 40-метровый памятник Юрию Гагарину в Москве. Титановые кольца очень легкие. Атомная масса металла равна 47,867. Соответствующий показатель для золота — 196,966. Выбор титана позволит в прямом смысле облегчить участь вашего безымянного пальца.

Свойства: ковкий, легкий, прочный, пластичный, не поддается коррозии ни на воздухе, ни в воде, так как покрывается защитной оксидной пленкой; растворяет­ся лишь в плавиковой кислоте.

Известно около 70 минералов, его содержащих: титанит, ильменит и пр. Ильменит участвует в приготовлении прочнейших титановых белил, которые используются для покраски космических кораблей. Химически титан достаточно активен, особенно при повышенных температурах.

По материалам astrologica.ru

* Титаны — это были боги первого поколения, рожденные от брака земли Геи и неба Урана; их шесть братьв (Гиперион, Иапет, Кой, Крий, Крон, Океан) и шесть сестер-титанид (Мнемосина, Рея, Тейя, Тефида, Феба, Фемида), вступивших в брак между собой и породивших новое поколение титанов: Прометей, Гелиос, музы, Лето и других. Имя «титаны», связанное, возможно, с солнечным жаром или владычеством, догреческого присхождения. Младший их титанов, Крон, по наущению своей матери Геи серпом оскопил Урана, чтобы прекратить его бесконечную плодовитость и занял место верховного бога среди титанов. Родившемуся от Крона и Реи Зевсу, в свою очередь, было суждено лишить власти отца и стать во главе нового поколения богов — олимпийцев.

Титан — металл будущего

Живя на уютной Земле, мы редко задумываемся над тем, какое место занимает наша планета во всей Вселенной и что представляет собой солнечная система. Но уже начавшаяся космическая эра настоятельно побуждает нас, в том числе и тех, кто непосредственно не связан с космонавтикой, обращать свои мысленные взоры за пределы Земли. И что же мы видим?

Сразу же за тонкой земной атмосферой начинается бездна космоса. Планеты, их спутники и даже звёзды — совсем крохотные образования вещества по сравнению с этой бездной почти абсолютной пустоты́.

Представим себе солнечную систему, уменьшенную в 2 миллиарда раз.

Диаметр её составит всего четыре с половиной километра. Огромное Солнце станет небольшим шаром диаметром 70 сантиметров, а планеты будут ещё меньше. Меркурий и Марс превратятся в зернышки, Земля и Венера — горошины. Уран и Нептун покажутся грецкими орехами, а гигантские Сатурн и Юпитер — яблоками средней величины. Отделять эти зернышки и горошины друг от друга будут многие десятки и сотни метров пространства. Расстояние же между Ураном и Нептуном, самыми удаленными от Солнца планетами, которые на нашей уменьшенной модели выглядят грецкими орехами, достигнет почти километра.

Таким образом, на пространстве в 16 квадратных километров будут размещены несколько зернышек, горошин, орехов и яблок, а также золотистый шар, достигающий размеров мяча. Вот и всё, что приходится на долю вещества, остальное занимает космическое пространство.

Картина солнечной системы, образно нарисованная Константином Эдуардовичем Циолковским, помогает отчётливо представить громаду космоса и наше очень скромное место в нём. Но, несмотря на столь, казалось бы, незаметное положение, люди уже начали великий штурм мироздания, посылая плоды своего разума и творения своих рук как к ближайшим, так и отдаленным космическим объектам. Аппараты, созданные на Земле, достигают не только Луны. Но и Венеры, Марса, Юпитера.

Если до Луны корабль летит всего трое суток, то время достижения Венеры и Марса измеряется уже многими месяца́ми, а полёт к Сатурну и Юпитеру занимает годы. Между тем космическое пространство — не слишком уютно для путешествий. Там царит ледяной холод, но сторона корабля, повернутая к Солнцу, сильно нагревается. Такие температурные контрасты действуют самым отрицательным образом на материалы, из которых изготовлен космический аппарат.

Не идут на пользу кораблю и частицы космической пы́ли, щедро рассыпанной по всему пространству Вселенной, через которую летательному аппарату нередко приходится «пробираться». Вредна и космическая радиация. Казалось бы, чем может вредить пустота — космический вакуум, огромнейшее безвоздушное пространство? А между тем, ва́куум далеко не безобиден.

Ва́куум и металлы

Эксперименты, проведенные учёными с различными металлами в глубоком ва́кууме, позволили обнаружить любопытные факты. В результате экспериментов выяснилось, что глубокий вакуум действует на металлы очень специфически: кадмий, цинк, магниевые сплавы. закипа́ют и испаряются, многие другие металлы, хотя и в меньшей степени, но тоже начинают терять свои собственные атомы. Наиболее устойчивыми в ва́кууме оказались сталь и титан, а также вольфрам и платина. Менее устойчив, но ещё достаточно надёжен алюминий. Остальные металлы мало пригодны для эксплуатации в открытом космосе.

Эти эксперименты были проведены сравнительно недавно — уже после того, как титан стали применять в космической технике. Тогда, разумеется, не знали, что новый металл очень устойчив в ва́кууме, но и без того у титана имелось немало достоинств, среди которых на первом месте прочность и лёгкость — они и определили быстрый рост его применения в космической технике.

С каждым запуском кораблей серии «Аполлон» в межпланетное пространство стартовали более 60 тонн титановых сплавов. Узлы и детали из сплавов титана использовались не только в самом корабле «Аполлон», но и в лунном модуле, и в трехступенчатой ракете-носителе «Сатурн-5», которая выводи́ла космических путешественников на траекторию полета к Луне.

На космическом корабле «Аполлон» насчитывается около сорока титановых емкостей, предназначенных для хранения химически активных веществ, входящих в состав горючего. В частности, в титановых баках хранятся монометилгидразин, используемый как топливо, тетраксидазот, применяемый в качестве окислителя, и жидкие газы — кислород, водород, азот и гелий. Воздух, который служит для вентиляции кабины в космических полетах, содержится в титановых цилиндрах под давлением, превышающим 200 атмосфер.

Третья ступень ракеты-носителя Сатурн 5

Третья ступень ракеты-носителя «Сатурн V», 84В, предназначалась для выведения «Аполлона» на орбиту вокруг Земли и последующего разгона для полёта к Луне. На подлете к Луне «Аполлон» отделялся от ступени, а сама ракета либо врезалась в поверхность Луны, либо выходила в межпланетное пространство, становясь спутником Солнца.

В лунном модуле, опуска́вшемся на пыльную поверхность нашего естественного спутника, из нового конструкционного материала изготовлена камера сгорания жидкостного ракетного двигателя. В гигантской ракете «Сатурн-5» сосуды высокого давления и лопасти стабилизаторов тоже из титана.

Корпус ракеты «Титан-II», которая выводи́ла на околоземную орбиту космический корабль «Дже́мини», высотой 27 метров и диаметром 3 метра был изготовлен из титана с использованием не́которого количества сплавов на основе алюминия и магния. Кабины космических кораблей «Дже́мини» и «Меркурий» почти полностью были сделаны из титана.

Титановые сплавы были успешно использованы для корпусов двигателей американских космических кораблей «Пионер-4», «Юнона-2», «Юпитер-C». Новый промышленный металл применяется и в установках для запуска ракет.

Титан — металл, который в немалой степени обеспечил и обеспечивает многие достижения в освоении космического пространства.

Сегодня космические перевозки уже не фантастика, а реальность. Но сто́ят они фантастически дорого. Отсюда понятно, насколько важно поставлять для орбитальных и лунных станций, монтируемых непосредственно в космосе, конструкционный материал, который был бы высокопро́чным и вместе с тем не слишком плотным. Таким материалом как раз и является титан. Металл не только сохранит в космосе все свои достоинства, но и лишится некоторых присущих ему недостатков.

Например, в межпланетном пространстве значительно упростится сварка титана: не надо будет защищать металл от взаимодействия с воздухом, так как такового в космосе попросту нет. Сваривается же титан отлично. При испытаниях сваренного образца на прочность гораздо чаще случается так, что разрывается основной металл, а не сварной шов.

Но возможна ли сама по себе сварка в условиях невесомости? Предстояло проверить это на практике. Оказалось, что в космосе металлы свариваются так же надежно, как и на Земле. Успешные эксперименты по автоматической сварке и резке титана в межпланетном пространстве провели в октябре 1969 года советские космонавты Г.С. Шо́нин и В.Н. Кубасов во время группового полёта трёх космических кораблей «Союз». Самая первая экспедиция на Луну доставила с нашего естественного спутника образцы пород с очень большим содержанием титана. Впоследствии оказалось, что «Аполлон-11» совершил посадку в районе титанового месторождения. Образцы лунного грунта, доставленные советскими автоматическими станциями и другими американскими кораблями, были взяты в иных местах нашего естественного спутника и содержали уже гораздо меньше титана. Но даже и это "низкое" содержание значительно превосходит процент содержания элемента в земной коре. Итак, Луна богата титаном. Запомним это. И обратим внимание на то, что уже не первый год (и не только в научно-фантастической литературе, но и в самой что ни на есть серьезной печати) появляются материалы, рассказывающие о перспективах космической металлургии, о неизбежном её возникновении и её преимуществах.

Предполагают, что энергию для металлургических предприятий будущего дадут солнечные нагреватели. Сфокусированные солнечные лучи будут плавить любые соединения и самые тугоплавкие металлы. Космический вакуум намного упростит технологию получения целого ряда металлов, в том числе и титана.

Теперь давайте немного помечта́ем. Перенесемся в XXII век. Луна уже обитаема. Здесь живут и работают люди, исследуют космическое пространство и недра нашего спутника, ведут самые разнообразные работы. Вряд ли сюда будут возить с Земли основные материалы для строительства — намного дешевле и целесообразней добывать их прямо на месте.

В отношении металлов очень сомнительно, что для создания объектов, находящихся в безвоздушном пространстве, будут использовать платину или вольфрам. Значит, остаются только сталь, титан и алюминий. Но сталь плохо переносит космический холод, алюминий же не настолько прочен, чтобы конкурировать с титаном. К тому же, будет ли он найден на Луне? Неизвестно. А титан обнаруживают на каждом «обжи́том» участке лунной поверхности. Так что, по всей вероятности, именно титан будет основным конструкционным материалом для сооружений, изготовляемых и монтируемых непосредственно в космосе. Титановые заводы, работающие в идеальном вакууме, будут производить гораздо более дешевый металл, чем если бы они работали на Земле. Титану найдется очень много дел в межпланетном пространстве, и сейчас даже трудно представить себе будущее этого металла во всей полноте. Можно только с уверенностью сказать, что будущее это — большое и прекрасное. Титан хорошо послужит людям в завоевании космоса.

Лит-ра: Г.И. Николаев. Металл века.
Подготовил Владимир Каланов

Титан — описание элемента с фото, характеристика его влияния на организм человека, а также потребность в этом химическом элементе

Титан – один из загадочных, малоизученных макроэлементов в науке и жизни человека. Хотя его не зря называют «космическим» элементом, т.к. он активно применяется в передовых отраслях науки, техники, медицины и во многом другом – это элемент будущего.

характеристика металлаЭтот металл серебристо-серого цвета (см. фото), не растворим в воде. Он у него небольшая химическая плотность, поэтому ему характерна легкость. В то же время он очень прочен и легко поддается обработке из-за своей плавкости и пластичности. Элемент химически инертен благодаря наличию на поверхности защитной пленки. Титан не горюч, но его пыль взрывоопасна.

Открытие этого химического элемента принадлежит большому любителю минералов англичанину Уильяму Мак-Грегору. Но своим названием титан обязан все же химику – Мартину Генриху Клапроту, который обнаружил его независимо от Мак-Грегора.

Предположения о причинах, по которым этот металл назвали «титаном» романтичны. По одной версии, название связано с древнегреческими богами Титанами, родителями которых являлись бог Уран и богиня Гея, а вот согласно второй, оно происходит от имени королевы фей – Титании.

Как бы там ни было, этот макроэлемент девятый по нахождению в природе. Он входит в состав тканей представителей флоры и фауны. Много его в морской воде (до 7%), а вот в почве его содержится всего 0,57%. Наиболее богат запасами титана Китай, за ним идет Россия.

Действие титана

Действие макроэлемента на организм обусловлено его физико-химическими свойствами. Его частицы очень малы, они могут проникать в клеточную структуру и влиять на ее работу. Считается, что из-за своей инертности макроэлемент не взаимодействует химически с раздражителями, и поэтому не токсичен. Однако он вступает в связь с клетками тканей, органов, крови, лимфы посредством физического действия, что приводит к их механическому повреждению. Так, элемент может своим действием привести к повреждению одно- и двухцепочной ДНК, повредить хромосомы, что может привести к риску развития рака и сбоя в генетическом коде.

Выяснилось, что частицы макроэлемента не способны пройти через кожу. Поэтому попадают они внутрь человека только с едой, водой и воздухом.

вред элемента для здоровья

Титан лучше усваивается через желудочно-кишечный тракт (1-3%), а вот через дыхательные пути всасывается только около 1%, однако содержание его в организме сконцентрировано как в легких (30%). С чем это связано? Проанализировав все вышеуказанные цифры, можно прийти к нескольким выводам. Во-первых, титан вообще плохо усваивается организмом. Во-вторых, через ЖКТ идет выведение титана через кал (0,52 мг) и мочу (0,33 мг), а вот в легких такой механизм слабый или вовсе отсутствует, так как с возрастом у человека концентрация титана в этом органе возрастает практически в 100 раз. Чем же обусловлена такая большая концентрация при таком слабом всасывании? Скорее всего, это связано с постоянной атакой на наш организм пыли, в которой всегда присутствует титановая составляющая. Кроме того в данном лучае нужно учитывать нашу экологию и наличие промышленных мощностей вблизи населенных пунктов.

По сравнению с легкими, в остальных органах, таких как селезенка, надпочечники, щитовидная железа, содержание макроэлемента на протяжении всей жизни остается неизменным. Также присутствие элемента наблюдается в лимфе, плаценте, головном мозге, женском грудном молоке, костях, ногтях, волосах, хрусталике глаза, тканях эпителия.

Находясь в костях, титан участвует в их срастании после переломов. Также положительное действие наблюдается в восстановительных процессах, происходящих в поврежденных подвижных соединениях костей при артритах и артрозах. Этот металл является сильным антиоксидантом. Ослабляя действие свободных радикалов на клетки кожи и крови, он защищает весь организм от преждевременного старения и изнашивания.

титан для слуха

Концентрируясь в отделах мозга, отвечающих за зрение и слух, положительно влияет на их функционирование. Нахождение металла в надпочечниках и щитовидной железе подразумевает его участие в вырабатывании гормонов, участвующих в обмене веществ. Он также задействован в выработке гемоглобина, выработке эритроцитов. Снижая в крови содержание холестерина и мочевины, следит за ее нормальным составом.

Негативное действие титана на организм связано с тем, что он является тяжелым металлом . Попадая в организм, он не расщепляется и не разлагается, а оседает в органах и тканях человека, отравляя его и вмешиваясь в процессы жизнедеятельности. Он не подвержен коррозии и устойчив к действию щелочей и кислот, поэтому желудочный сок не способен на него воздействовать.

Соединения титана имеют способность не пропускать коротковолновое ультрафиолетовое излучение и не всасываются через кожу, поэтому их можно использовать для защиты кожи от ультрафиолета.

Доказано, что курение увеличивает поступление металла в легкие из воздуха во много раз. Это ли не повод бросить эту вредную привычку!

Суточная норма — какова потребность в химическом элементе?

потребность в химическом элементеСуточная норма макроэлемента обусловлена тем, что в теле человека содержится примерно 20 мг титана, из них 2,4 мг – в легких. Каждый день с пищей организм приобретает 0,85 мг вещества, с водой – 0,002 мг, а с воздухом – 0,0007 мг. Суточная норма для титана очень условна, так как последствия его влияния на органы до конца не изучено. Приблизительно она равняется около 300-600 мкг в сутки. Нет никаких клинических данных о последствиях превышения этой нормы – все на стадии опытных исследований.

Недостаток титана

Состояния, при которых бы наблюдался недостаток металла, не выявлены, поэтому ученые пришли к выводу, что их в природе не существует. Но его дефицит наблюдается при большинстве тяжелых заболеваний, что может ухудшить состояние больного. Этот недостаток можно убрать титаносодержащими препаратами.

Влияние избытка титана на организм

Избыток макроэлемента единоразового поступления титана в организм не выявлен. Если, предположим, человек проглотил титановый штифт, то, по всей видимости, об отравлении говорить не приходится. Скорее всего, из-за своей инертности элемент не вступит в контакт, а выведется естественным путем.

титан - влияние на организм

Большую опасность вызывает систематическое увеличение концентрации макроэлемента в органах дыхания. Это приводит к повреждению дыхательной и лимфатической систем. Также есть непосредственная связь между степенью протекания силикоза и содержанием элемента в органах дыхания. Чем больше его содержание, тем тяжелее протекает болезнь.

Избыток тяжелого металла наблюдается у людей, работающих на химических и металлургических предприятиях. Наиболее опасен хлорид титана – за 3 рабочих года начинается проявление тяжелых хронических заболеваний.

Такие заболевания лечат специальными препаратами и витаминами.

Каковы источники?

С какими продуктами титан попадает в организм человека?

Элемент попадает в организм человека в основном с пищей и водой. Больше всего его в бобовых (горох, фасоль, чечевица, бобы) и в злаковых (рожь, ячмень, гречка, овес). Выявлено его присутствие в молочных и мясных блюдах, а также в яйцах. В растениях сконцентрировано больше этого элемента, чем в животных. Особенно высоко его содержание в водоросли – кустистой кладофоре.

Во всех продуктах питания, где присутствует пищевой краситель Е171, содержится диоксид этого металла. Его применяют в изготовлении соусов и приправ. Вред этой добавки находится под вопросом, так как оксид титана практически не растворим в воде и желудочном соке.

Показания к применению

Показания к применению элемента, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Диоксид этого вещества используют в лечении болезней кожи, таких как хейлит, герпес, угревая сыпь, воспаление слизистой рта. Им удаляют гемангиому лица.

свойства металла в борьбе с раком

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Аквакомплекс глицеросольвата макроэлемента способствует заживлению язвенных ран.

Для ученых по всему миру открыто много возможностей для изучения элемента будущего, так как его физико-химические свойства высоки и могут принести безграничную пользу для человечества.

Титан металл. Свойства и применение

Титан — металл фей. По крайней мере, элемент назван в честь царицы этих мифических существ. Титания, как и все ее сородичи, отличилась воздушностью.

Титан-металл-Свойства-титана-Применение-титана-1

Летать феям позволяют не только крылья, но и малый вес. Титан тоже легок. Плотность у элемента самая малая среди металлов. На этом сходство с феями заканчивается и начинается чистая наука.

Химические и физические свойства титана

Титан – элемент серебристо-белого цвета, с выраженным блеском. В бликах металла можно разглядеть и розовый, и синий, и красный. Переливаться всеми цветами радуги – характерная особенность 22-го элемента таблицы Менделеева .

Его лучение всегда ярко, ведь титан устойчив к коррозии. От нее материал защищен оксидной пленкой. Она формируется на поверхности при стандартных температура.

В итоге, коррозия металлу не страшна ни на воздухе, ни в воде, ни в большинстве агрессивных сред, к примеру, царской водке . Так химики прозвали смесь концентрированных азотной и соляной кислот.

Плавится 22-ый элемент при 1 660-ти градусов Цельсия. Получается, титан – цветной металл тугоплавкой группы. Гореть материал начинает раньше, чем размягчаться.

Белое пламя появляется при 1 200-от градусов. Закипает вещество при 3 260-ти по шкале Цельсия. Плавление элемента делает его вязким. Приходится использовать специальные реагенты, препятствующие налипанию.

Если жидкая масса металла тягучая и клейкая, то в состоянии порошка титан взрывоопасен. Для срабатывания «бомбы» достаточно нагрева до 400-от градусов Цельсия. Принимая тепловую энергию, элемент плохо ее передает.

В качестве электропроводника титан тоже не используют. Зато, материал ценят за прочность. В сочетании с малой плотностью и весом, она пригождается во многих отраслях промышленности.

Химически титан довольно активен. Так, или иначе, металл взаимодействует с большинством элементов. Исключения: — инертные газы, литий , натрий, калий, магний , кальций и сера .

Столь малое количество безразличных титану веществ затрудняет процесс получения чистого элемента. Нелегко произвести и сплавы металлов титана. Однако, промышленники научились это делать. Слишком уж высока практическая польза смесей на основе 22-го вещества.

Применение титана

Сборка самолетов и ракет, — вот где в первую очередь пригождается титан. Металл купить необходимо, чтобы повысить жаростойкость и жаропрочность корпусных сплавов . Жаростойкость – сопротивление высоким температурам.

Титан-металл-Свойства-титана-Применение-титана-2

Они, к примеру, при разгоне ракеты в атмосфере неизбежны. Жаропрочность – сохранение в «огненных» обстоятельствах еще и большинства механических свойств сплава. То есть, с титаном эксплуатационные характеристики деталей не меняются в зависимости от условий внешней среды.

Пригождается и устойчивость 22-го металла к коррозии. Это свойство важно уже не только в деле производства машин. Элемент идет на колбы и прочую посуду для химических лабораторий, становится сырьем для ювелирных украшений .

Сырье не из дешевых. Но, во всех отраслях затраты окупаются сроком службы титановых изделий, их способностью сохранять первозданный вид.

Так, серия посуды питерской фирмы «Нева» «Металл Титан ПК» позволяет использовать при жарке металлические ложки. Тефлон бы они уничтожили, поцарапали. Титановому же покрытию нипочем нападки стали, алюминия.

Это, кстати, касается и украшений. Кольцо из серебра или золота просто поцарапать. Модели из титана остаются гладкими десятилетия. Поэтому 22-ый элемент начали рассматривать, как сырье для обручальных перстней.

Сковорода «Титан Металл» легка, как и посуда с тефлоном. 22-ый элемент лишь немногим тяжелее алюминия. Это вдохновило не только представителей легкой промышленности, но и специалистов автомобилестроения. Не секрет, что в машинах много алюминиевых деталей.

Они нужны для снижения массы транспорта. Но, титан прочнее. Касаемо представительских машин автомобилестроение уже почти полностью перешло на использование 22-го металла.

Детали из титана и его сплавов снижают массу двигателя внутреннего сгорания на 30%. Облегчается и корпус, правда, растет цена. Алюминий, все же, дешевле.

Фирма «Нева Металл Титан», отзывы о которой оставляют, как правило, со знаком плюс, производит посуду. Автомобильные бренды используют титан для машин. Ювелиры придают элементу форму колец, сережек и браслетов. В этой череде перечислений не хватает медицинских компаний.

22-ый металл – сырье для протезов и хирургических инструментов. Продукция почти не имеет пор, поэтому легко стерилизуется. К тому же, титан, будучи легким, выдерживает колоссальные нагрузки. Что еще нужно, ели, к примеру, вместо коленных связок ставится чужеродная деталь?

Отсутствие в материале пор ценится успешными рестораторами. Чистота скальпелей хирурга важна. Но, важна и чистота рабочих поверхностей поваров. Чтобы пища была безопасной, ее разделывают и пропаривают на титановых столах.

Титан-металл-Свойства-титана-Применение-титана-5

Они не царапаются, легко моются. Заведения среднего уровня, как правило, пользуются стальной утварью, но, она уступают в качестве. Поэтому, в ресторанах с Мишленовскими звездами оборудование титановое.

Добыча титана

Элемент входит в 20-ку наиболее распространенных на Земле, находясь ровно посередине рейтинга. По массе коры планеты содержание титана равно 0,57%. На литр морской воды 24-го металла приходится 0,001 миллиграмма. В сланцах и глинах элемента содержится 4,5 килограмма на тонну.

В кислых породах, то есть богатых кремнеземом, на титан приходятся 2,3 килограмма с каждой тысячи. В основных залежах, образовавшихся из магмы, 22-го металла около 9-ти кило на тонну. Меньше всего титана скрывается в ультраосновных породах с 30-процентным содержанием кремнезема – 300 граммов на 1 000 килограммов сырья.

Не смотря на распространенность в природе, чистый титан в ней не встречается. Материалом для получения 100-процентного металла стал его йодит. Термическое разложение вещества провели Аркель и Де Бур. Это голландские химики. Эксперимент удался в 1925-ом году. К 1950-ым запустили массовое производство.

Титан-металл-Свойства-титана-Применение-титана-3

Современники, как правило, добывают титан из его диоксида. Это минерал, называемый рутилом. В нем наименьшее количество сторонних примесей. Походят, так же титанит и ильменит .

При переработке ильменитовых руд остается шлак. Он-то и служит материалом для получения 22-го элемента. На выходе он порист. Приходится вести вторичную переплавку в вакуумных печах с добавлением лигатуры .

Если ведется работа с диоксидом титана, к нему примешивают магний и хлор. Смесь нагревают в вакуумных печах. Температуру поднимают до тех пор, пока все лишние элементы не испарятся. На дне емкостей остается чистый титан. Метод назван магниетермическим.

Отработан и гидридно-кальциевый метод. Он основан на электролизе. Ток высокой силы позволяет разделить гидрид металла на титан и водород. Продолжает применяться и йодитный способ добычи элемента, отработанный в 1925-ом году. Однако, в 21-ом веке он наиболее трудоемкий и дорогой, поэтому начинает забываться.

Цена титана

На металл титан цена устанавливается за килограмм. В начале 2016-го, это около 18-ти долларов США. Мировой рынок 22-го элемента за последний год достиг 7 000 000 тонн. Крупнейшие поставщики – Россия и Китай.

Это связано с разведанными в них и пригодными для разработки запасами. Во втором полугодии 2015-го спрос на титановые слитки и листы начал снижаться.

Титан-металл-Свойства-титана-Применение-титана-4

Реализуют металл и в виде проволоки, различных деталей, к примеру, труб. Они гораздо дешевле биржевых расценок. Но, нужно учитывать, что в слитках идет чистый титан, а в изделиях использованы сплавы на его основе.

Содержание 22-го элемента в них, порой, не превышает 20%. Примерно настолько же в этом году эксперты прогнозируют рост стоимости металла. Он нужен в оборонном комплексе, который многие страны наращивают в связи с непростой ситуацией на мировой политической арене.

голоса
Рейтинг статьи
Читайте так же:
Первая революционная идея об источнике света ученый
Ссылка на основную публикацию
Adblock
detector