Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое кинематическая схема станка

Что такое кинематическая схема станка

Как выбрать и купить фрезерно-гравировальный станок с ЧПУ

3. Кинематика резания

Кинематика станков и кинематика резания, хотя они и взаимосвязаны, принципиально различны как в области теории, так и в области практического использования.

В кинематике станков изучаются научные основы и работа таких кинематических структур взаимодействующих механизмов станка, настройкой которых можно сообщить инструменту и обрабатываемой заготовке необходимые сочетания и количественные соотношения главного и вспомогательного движений, т.е. скорости и подачи. Кинематика станков рассматривает движения, передаваемые механизмами станков инструменту и обрабатываемой заготовке во время как рабочих, так и холостых циклов.

Движения, сообщаемые инструментам и заготовке механизмами станка, обычно рассматривают в прямоугольной системе координат с осями Х, Y, Z (рис.13). С ее помощью ориентируют также взаимное положение всех механизмов станка. Кинематика станков обеспечивает различные сочетания движений механизмов:

  1. рабочие и холостые движения;
  2. движения скорости резания при включенном механизме подачи;
  3. движение подачи при бездействующем механизме скорости;
  4. одновременное движение скорости и подачи.

Все эти кинематические возможности необходимы для универсального и рационального использования металлорежущих станков.

Рис.13. Принципиальные кинематические схемы

В кинематике резания рассматриваются классификации принципиальных кинематических схем резания, как научная основа анализа и синтеза:

  1. технологических способов формообразования деталей машин,
  2. трансформации геометрических параметров режущей части инструментов в процессе резания металлов.

Кинематика резания рассматривает движения, которые действуют в процессе резания во время рабочего цикла, с момента, когда лезвие вступает в контакт с металлом заготовки, и до момента, когда контакт лезвия с заготовкой прекращается. В процессе резания механизм станка сообщает закрепленным на нем инструменту и заготовке прямолинейное и вращательное движения. Суммируясь, эти движения сообщают лезвиям инструментов относительно заготовки результирующее движение резания. Кинематика резания рассматривает относительные взаимные перемещения, совершаемые во время рабочего цикла обрабатываемой заготовкой и лезвием инструмента, независимо от того, раздельно или одновременно приводятся в движение механизмами станка заготовка или инструмент.

Относительные перемещения заготовки и лезвий инструмента в кинематике резания рассматриваются в прямоугольной координатной системе с осями X, Y, Z, той же, что и в кинематике станков (рис.13)

3.1. Принципиальные кинематические схемы резания

Кинематика резания классифицирует сочетания исходных движений, сообщаемых заготовкам и лезвиям инструментов механизмами станков во время рабочего цикла. Основой классификации являются направление, характер и число одновременно осуществляемых движений. Сочетания исходных движений регламентированы системой принципиальных кинематических схем резания. Количественные соотношения сочетаемых движений конкретной принципиальной кинематической схемы резания определяют вид инструмента, принцип его работы и технологическое назначение.

В пределах каждой принципиальной схемы кинематика резания рассматривает как результат суммарного действия сочетаемых движений:

а) вектор скорости результирующего движения резания — векторную сумму скоростей резания, подачи и движения формообразования, осуществляемых механизмами станка;

б) траекторию результирующего движения резания и поверхность, на которой лежит эта траектория;

в) формообразование новых плоскостей- совокупность траекторий результирующего движения резания всех точек лезвия инструментов.

Кинематика резания рассматривает также кинематические геометрические параметры режущей части инструмента. Эти параметры учитывают реальные условия: взаимное относительное перемещение

поверхности резания и задней поверхности резания лезвия инструмента; направление сбега стружки по передней поверхности; изменения числовых значений всех геометрических параметров лезвия в процессе резания.

Классификационный реестр содержит несколько сот принципиальных кинематических схем резания. Из них наиболее часто используются три простейшие схемы, когда в процессе резания действуют:

  1. одно прямолинейное главное движение Dr (рис.13 а) ;
  2. два прямолинейных движения — главное движение Dr и движение подачи Ds (рис.13 б);
  3. одно вращательное главное движение Dr и одно прямолинейное движение подачи Ds (рис.13 в).

3.2. Кинематические схемы методов механической обработки

Hа основе принципиальной кинематической схемы(рис.13 a), предусматривающей в процессе резания одно прямолинейное движение, производится однопроходные операции строгания, протягивания и долбления. Прямолинейное главное движение Dr количественно выражается скоростью резания v.

Hа основе принципиальной кинематической схемы резания (рис.13 б), предусматривающей два одновременно действующих прямолинейных движения, осуществляются операции поперечного и продольного строгания или долбления. Одно из них направлено вдоль оси X является главным движением резания Dr, а другое — вспомогательным движением подачи Ds и направлено вдоль оси Z.

Hа кинематической схеме резания, предусматривающей два одновременно действующих движения — вращательное в плоскости YZ вокруг оси X и и поступательное вдоль оси X (рис.13 в) — основаны распространенные виды обработки резанием: точение, сверление, зенкерование и развертывание. В этих случаях вращательное движение является главным движением, количественно выражаемым скоростью резания. Если выражать скорость в метрах в минуту, то

где: D — диаметр окружности в мм, на которой находится рассматриваемая точка главной режущей кромки;

n- частота вращения, об/мин.

Прямолинейное движение является вспомогательным движением подачи и количественно выражается подачей S мм/об.

Pезультирующей траекторией одновременно действующих главного и вспомогательного движений является винтовая траектория движения резания. Если сделать развертку диаметра D окружности детали в рассматриваемой точке, то угол подъема h винтовой поверхности будет связан со скоростью резания и подачей следующей зависимостью:

tg h = nS/(1000 V) = S/( p D)

Таким образом, любая кинематическая схема резания изменяет во времени и в пространстве положение линии контакта инструмента и обрабатываемой поверхности детали. В свою очередь, это приведет к изменению положения условных плоскостей, определяющих геометрию инструмента и, следовательно, к изменению всей геометрии инструмента.

1.2. Кинематическая схема токарного станка

Кинематической схемой токарного станка называют условное изображение совокупности всех механизмов, посредством которых осуществляется движение элементов станка; она показывает взаимосвязь отдельных элементов и механизмов, участвующих в передаче движения различных органов станка.

В токарном станке имеются две кинематические цепи: электродвигатель — шпиндель (цепь главного движения) и шпиндель — суппорт (цепь подач), которые изображают в двух вариантах — для продольной (при нарезании резьбы и точении) и поперечной подачи резца.

Кинематическая цепь токарного станка может состоять из ряда кинематических пар зубчатых колес или шкивов, червячных и винтовых передач. Последовательность кинематических пар в цепи представлена цифрами, указывающими число зубьев в зубчатых колесах или диаметры шкивов. Для элементов кинематических пар, закрепленных на одном валу, цифры записывают через тире, а закрепленных на различных валах — через знак деления.

На рис. 9 приведена кинематическая схема токарно-винторезного станка. Проследим по ней кинематическую цепь главного движения: электродвигатель — шпиндель. Эта цепь связывает вал двигателя (диаметр шкива d1 = 142 мм) через клиноременную передачу со шкивом вала I (диаметр шкива d2 = 254 мм) коробки скоростей токарного станка, на котором свободно укреплен блок зубчатых колес 5651 и зубчатое колесо 50. На валу находится также фрикционная пластинчатая муфта М1 для сообщения шпинделю прямого (при включении влево) или обратного (при включении вправо) вращения. При включении муфты М1 влево вращение с вала I передается на вал II. На нем помещается подвижной блок зубчатых колес Б1 (3439), который, поочередно соединяясь с зубчатыми колесами блока 5651, обеспечивает передачу различного числа оборотов валу II. Затем с этого вала при помощи подвижного блока Б2 (475538) на валу VII и подвижного блока Б5 (4354) на валу VII вращение передается на шпиндель (шесть чисел оборотов).

При включении перебора (валы IIVV) движение с вала III передается валу IIV, который с помощью подвижных блоков Б3(8845) и Б4(2245) передает его на вал V и затем через колеса 27 —54 на шпиндель (вал VII)’, дополнительно получаем три передаточных отношения. Структурная формула кинематической цепи имеет вид (об/мин):

[6]

где пшп и nдв — числа оборотов шпинделя и электродвигателя в минуту; iк с — переменное передаточное отношение коробки скоростей (с учетом передаточного отношения перебора); — коэффициент проскальзывания ремня ( = 0,98).

При положении зубчатых колес, изображенных на рис. 9, число оборотов шпинделя при прямом ходе

обIмин.

Токарно-винторезный станок 1К62 имеет 24 числа оборотов шпинделя (от 12,5 до 2000 об/мин).

Аналогично можно установить кинематическую цепь суппорта при продольной и поперечной подачах, а также при нарезании резьбы. Например, структурная формула для продольной подачи (мм/об):

sпр=l . iк п . .. m . z [7]

где iк п — передаточное отношение коробки подач (с учетом передаточных отношений от шпинделя к реверсу, самого реверса, сменных зубчатых колес гитары и механизма фартука); т — модуль реечного зацепления, мм; г — число зубьев реечного колеса.

При положении зубчатых колес, изображенных на рис. 9, продольная подача

Всего станок имеет 48 продольных подач (от 0,075 до 4, 46 мм/об) и столько же поперечных (от 0,038 до 2,23 мм/об).

Анализируя кинематическую схему токарного станка и ее кинематические цепи, можно подобрать необходимую структурную формулу настройки станка для выполнения конкретной задачи.

КИНЕМАТИКА СТАНКОВ

Глава 3. Общие сведения о металлорежущих станках и технологическом процессе обработки на них
Для изготовления детали рабочим органам станка необходимо сообщить определенные согласованные движения, при которых с заготовки снимается избыточный материал — припуск (см.гл.2).
В станках бывает вращательное или поступательное (возвратно-поступа¬тельное) движение резания, сообщаемое заготовке или режущему инстру¬менту. На всех изучаемых станках — токарных, фрезерных, сверлильных и шлифовальных, — движение резания вращательное. На станках для лезвий¬ной обработки резанием (токарных, фрезерных, сверлильных) скорость ре¬зания (м/мин) определяется по формуле: v=пdn/1000, где d — диаметр обра¬батываемой поверхности заготовки или инструмента, мм; n — частота их вращения, мин1 (об/мин). Для шлифовальных станков (при абразивной об¬работке) скорость резания (м/с) vшл=пdкрnКр/(1000-60).
Движение подачи непрерывное на токарных, фрезерных и сверлильных станках. На шлифовальных станках может быть прерывистое движение по¬дачи (плоскошлифовальные, круглошлифовальные), а также движение по¬дачи может состоять из нескольких движений.
Кинематическая схема станка представляет собой схему, на которой с по¬мощью условных обозначений изображаются звенья механизмов и кинема¬тические пары с указанием размеров, необходимых для кинематического анализа. Зависимость движений, связанных между собой элементов передач и механизмов определяется кинематической связью. Каждая связь состоит из механических, электрических, гидравлических и других кинематических це¬пей, по которым осуществляется передача движения. Кинематические цепи обеспечивают также изменение скоростей и направления движения испол¬нительных органов, в т.ч. при неизменной скорости привода (электродвига¬теля), преобразование и суммирование движений и т.п. Кинематические це¬пи состоят из отдельных звеньев. Элементы кинематических цепей (ГОСТ 2.770-68*) изображаются в ЕСКД1 на схемах условными обозначениями (табл.3.1).
Для станков, имеющих наряду с механическими передачами гидравличе¬ские, электрические и пневматические устройства, составляются соответст¬вующие гидравлические, электрические и пневматические схемы.
Элементы расчета кинематических цепей. Основным кинематическим параметром, характеризующим все виды механических передач вращатель¬ного движения и необходимым для определения показателей промежуточ¬ных и выходных элементов устройств приводов в станках, является отноше-

3.1. Условное обозначение элементов кинематики

ние i2 частоты вращения n — ведомого вала II(рис.3.1,а) к частоте вращения n1 ведущего вала (мин1):Следовательно, для ременной передачи (рис.3.1,6) i=d1/d2, где d1 и d2 — диаметр соответственно ведущего и ведомого шкивов; для зубчатых (рис.3.1,а) и цепных передач i=z1/z2, где z1 и z2 — число зубьев соответственно ведущего и ведомого колес или ведущей и ведомой звездочек; для червячной передачи (рис.3.1,в) i’=K/z, где К— число заходов червяка; г — число зубьев червячного колеса.

Рис.3.1. Передачи в станках:
а — зубчатая; б — ременная; в — червячная; г — винтовая; д — реечная
При последовательном расположении нескольких передач соотношение характеристик движения начального nн и конечного nк элементов кинемати¬ческой цепи определяется произведением отношений Г отдельных передач:
Передачи, преобразующие вращательное движение в поступательное, ха¬рактеризуются расстоянием, на которое поступательно перемещается дви¬жущийся элемент за один оборот приводного. Так, для передачи винт-гайк2 перемещение винта (рис.3.1,г), l=РК, где Р— шаг винта, мм; К— число за¬ходов винта.
Реечная передача характеризуется расстоянием l, на которое перемеша¬ется рейка (мм) за один оборот зубчатого колеса (рис.3.1.д): 1=пmz, где г — число зубьев; т — модуль, мм.
Скорость перемещения (мм/мин) конечного элемента (узла) кинемати¬ческой цепи vк=пнi’0бЩl.
Математическое выражение связи движений ведущего и ведомого эле¬ментов (начального и конечного звеньев) кинематической цепи станка на¬зывается уравнением кинематического баланса. В него входят составляю¬щие, характеризующие все элементы цепи от начального до конечного зве¬на, в том числе и преобразующие движение, например, вращательное в по¬ступательное. В этом случае в уравнение баланса входит единица параметра. определяющего условия этого преобразования: мм/об (шаг винта) — при использовании передачи винт — гайка или мм (модуль) — при использовании передачи зубчатое колесо — рейка. Этот параметр позволяет также согласо¬вывать характеристики движения начального и конечного звеньев кинема¬тической цепи. При передаче только вращательного движения в уравнение входят безразмерные составляющие (отношения i механизмов и отдельных передач), в связи с чем единицы параметров движения конечного и началь¬ного звеньев одинаковы.
Для станков с главным вращательным движением предельные значения частот вращения шпинделя nmin и nmах обеспечивают обработку заготовки с диаметром обрабатываемых поверхностей в диапазоне от dmах до dmin.
Диапазон регулирования частоты вращения шпинделя определяется отношение
наибольшей частоты вращения шпинделя станка к наименьшей: D=nmax/NMIN. ЭТОТ диапазон характеризует эксплуатационные возможности станка.
Значения частот вращения от nmin до nmax образуют ряд. В станкостроении, как правило, применяют геометрический ряд, в котором смежные значения и различаются в ф раз (ф — знаменатель ряда): n2/n1=n3/п2=n4/n3=. =nj/nj-1=ф. Приняты и нормализованы следующие знаменатели ф: 1,06; 1,12; 1,26, 1,41; 1.58; 1,78; 2,00. Значения указанных знаменателей ф положены в основу таб¬личных рядов частот вращений шпинделя.

Кинематическая схема станков и механизмов

Для полного понимания последовательности работы отдельных элементов созданного агрегата разрабатывается специальная схема взаимодействия. Схема кинематическая позволяет не только определить структуру всего агрегата, но и характер взаимодействия отдельных элементов. Она является своеобразным описанием его работы. Например, описание кинематической схемы станка включает все его элементы, способы соединения, принципы взаимодействия и точность работы каждой детали и конструкции в целом.

Кинематическая схема

По назначению и выполняемым функциям схемы делятся на следующие типы:

  • функциональные (поясняют основные функции каждой детали и всего механизма);
  • структурные (предназначены для представления структуры всего агрегата);
  • принципиальные (показывают последовательность различных связей между отдельными деталями).

Элементы, наносимые на чертёж, имеют стандартные обозначения. Зная назначения каждого из них можно понять особенности работы конкретного станка или агрегата.

Правила выполнения схем

Выполнение графических изображений кинематических схем производиться с использованием следующих правил:

  • выбор правильного обозначения применяемой конструкции;
  • точное указание места расположения отдельной детали;
  • последовательность их взаимодействия;
  • ширина линий (устанавливается существующими стандартами);
  • правильность отображения сносок;
  • нанесение необходимых надписей и символов.

Правила выполнения кинематических схем заключаются в описании следующих конструктивных единиц:

  • отдельных элементов;
  • линий кинематических связей;
  • звеньев;
  • кинематических пар (объединяют две или несколько элементов).

Разработчик вправе выбирать масштаб по своему усмотрению.Это разрешено утверждёнными стандартами. На чертеже допускается не соблюдение реального расположения конструктивных составляющих в корпусе агрегата.

Условные обозначения

Отдельной составляющей схемы считается блок (устройство, агрегат). Он предназначен для выполнения определённых функций. Его особенностью является не возможность деления на более мелкие детали без потери функционального назначения. Такими элементами являются: набор шестерён, один или несколько валов, установленные подшипники, используемый электродвигатель.

Линией связи между деталями обозначаются отрезком заданной длины и толщины. Он указывает на присутствие механизма связи между отдельными изделиями или устройствами. Если эта связь выполнена достаточно жёстко, конструкция объединяется в звено. Объединённые детали и звенья в единое целое называется установкой.

Для более подробного описания взаимодействующих элементов или звеньев, передачи направления движения допускается их объединение в так называемые кинематические пары. Особенности и порядок выполнения графических изображений зависит от их назначения.

На функциональных схемах отображают отдельные детали конструкции, которые задействованы в основном процессе передачи движения. Для удобства (по возможности) несколько деталей объединяют в отдельные функциональные группы. На чертеже обязательно отображают их функциональные связи. Каждый из них имеет собственный графический символ. Он установлен существующими стандартами и правилами оформления чертежей. Для лучшего понимания проходящего технологического процесса рекомендуется наносить технические характеристики использованных комплектующих. Кроме пояснительных надписей допускается размещение на свободном месте листа таблиц или диаграммы.

Принципиальная схема

На принципиальных схемах отображают детали или их группы. Это могут быть, валы, передаточные механизмы или готовый двигатель. Они дают представление и понимание используемых принципов работы всего агрегата. Каждая деталь или узел изображается в отключённом состоянии (без указания порядка взаимодействия с другими деталями). Их составляются для проведения регулировок и отладки собранного агрегата. С этой целью изображаются все основные кинематические связи: механические и не механические. Эти связи наносятся между отдельными элементами, кинематическими парами или группами элементов. Графически они располагаются в границах контура, обозначающего корпус агрегата. Чертёж каждого механизма, состоящего из нескольких комплектующих, может исполняться отдельным документом. На основном листе делается соответствующая ссылка. Если в составе отдельного агрегата или целого устройства применяют несколько одинаковых деталей, допускается выполнение одного чертежа. Остальные изображаются с допустимыми упрощениями. Положение комплектующих изделий может быть выбрано на основании наиболее оптимального процесса взаимодействия. Если этого недостаточно разрешается изобразить пунктирными линиями конечное положение детали.

Для лучшего понимания разрешается переносить элементы по поверхности листа. Обязательным условием является сохранение кинематических и функциональных связей. При нехватке места на поле чертежа в рамках границ корпуса агрегата, допускается отдельную деталь вынести за границы. В этом случае обязательно должны быть выполнены пояснения для ссылок. Они должны обеспечивать сохранение кинематических связей.

На принципиальной схеме обязательно указывают:

  • максимально допустимое число оборотов вращающихся валов, передаточных звеньев;
  • допустимое отклонение детали от исходного состояния;
  • справочные таблицы;
  • графики и диаграммы;
  • характеристики, полученные расчётным путём на этапе проектирования;
  • надписи, для пояснения специфики отдельных изделий или кинематических пар.

Схема,разработанная для пояснения протекающих динамических процессов, включает размеры каждого изделия с указанием допустимых значений механических нагрузок. На ней подробно наносят характеристики валов, места расположения, применяемых опор. При пересечении различных деталей необходимо сохранять неразрывность начерченных линий. При наложении изображений различных конструкций дальнюю изображают как невидимую. Все линии и фигуры исполняются по правилам чертежной графики.

На кинематических схемах отображают:

  • сплошными линиями установленной толщины –вращающиеся детали;
  • линиями тоньше на половину–конструкции, которые указываются с упрощениями, например, червячные передачи или зубчатые колёса;
  • взаимосвязи между отдельными составляющими, особенно кинематическими парами,выполняют пунктирными линиями;
  • указание взаимосвязи между двигателем и передаточными механизмами–двойными пунктирными линиями;
  • все связи, полученные расчётным путём, на этапе проектирования,при доработке наносятся тройными пунктирными линиями.

Кинематическим группам присваивают наименования. Оно поясняет тип и функциональное назначение. Могут быть указаны особенности привода подачи или специфику червячной передачи. Все эти пояснения делаются как вынесенные надписи на специально изображённой полке. Все эти надписи могут быть объединены в отдельный перечень. В нём делаются специальные пометки, указывающие на характеристики известные из справочников и стандартов, полученные расчётным путём и характеристики, получаемые в процессе отладки и регулировки всего механизма. В этом случае такие параметры помечаются специальной надписью, которая указывает, что они подбираются при регулировании.

Регламентирующие документы

Порядок и правила обозначения всех деталей, из которых состоит механизм,на всех типах схем установлены принятыми государственными стандартами. Эти правила, регламентируют порядок оформления графических элементов (фигур, надписей, обозначений)на кинематических схемах. Они являются обязательными для выполнения чертежей для любых механизмов и агрегатов.

Пара кинематическая

В этот перечень входят:

  • стандарт, определяющий перечень основных типов пояснительных надписей – ГОСТ 104-68;
  • ГОСТ 2.701-84, включает пояснение основных видов и типов разрабатываемых схем;
  • перечень установленных обозначений, разрешенных для использования ГОСТ 2.721–74;
  • список обозначений: условные графические и общего назначения ГОСТ 2.747–68;

Они определяют место расположения и правила графического изображения (выбор толщины линий, формы значков, изображение сносок).

Область применения

Для понимания взаимосвязей отдельных деталей в полной структуре агрегата составляются кинематические схемы. На них отображают последовательность передачи различных видов перемещения деталей: вращательного или поступательного движения. Например, можно последовательно проследить передачу вращения от электродвигателя через передаточные звенья к конечному устройству.

Например, кинематическая схема токарного станка наглядно показывает, как передаётся вращательное движение якоря двигателя, к редуктору и к исполнительному механизму (передней бабке). На ней отображается путь поступательного движения подачи заготовки и режущего инструмента. На каждой схеме все детали машин объединены в единый стройный механизм.

Подобные схемы позволяют понять принцип работы самых сложных механизмов. К таким системам относится газораспределительный механизм (ГРМ) двигателей внутреннего сгорания. При рассмотрении системы сжатия педального механизма можно определить физические параметры каждого элемента, величину и направление сил действующих на них.

Важное значение имеют подробные кинематические схемы, составленные для комплексных обрабатывающих центров. Схемы механизмов типа бипод обладают гибридной кинематической структурой. Они объединяют: станину, механизмы параллельной кинематики, систему удержания заготовок и подачи режущего инструмента. Механизм подачи инструмента специальный многоцелевой механизм для содержания различного режущего инструмента и подачи его в необходимое время к поверхности заготовки для осуществления обработки поверхности.

Чтение кинематических схем

Система отечественных стандартов определяет перечень и правила обозначения каждой используемой детали. Таких изображений существует более двух сотен.Все знаки располагаются с соблюдением последовательности передачи движения от элемента к элементу. Они имеют своё графическое изображение. Например, подшипники качения и скольжения обозначаются двумя параллельными линиями заданной толщины. Муфта отображается в виде системы зубьев, которые входят в зацепление. В зависимости от применяемого знака, можно определить, какая муфта изображена: предохранительная или кулачковая.

Обозначения муфты на схеме

Для станков, вал обозначается длиной сплошной линией, на котором располагаются различные элементы. Обозначение червячной передачи позволяет определить направление передачи обоих видов движений: поступательного и вращательного.

Для удобства чтения кинематической схемы любого оборудования все элементы нумеруются. Нумерация производится последовательно, начиная от двигателя и заканчивая конечным элементом. В соответствие с требованиями ЕСКД валы могут быть пронумерованы римскими цифрами, а остальные элементы схемы арабскими. Графические изображения (надписи или пояснения) располагают с помощью линий выноса. Каждая заканчивается небольшим отрезком (полкой) над которым наносят необходимые надписи. Их размещают на любом удобном свободном пространстве.

Чтение названий осуществляется на основании принятых наименований.Каждое имеет свою аббревиатуру. Она состоит из одной заглавной буквы и одной цифры. Вид обозначается заглавными буквами, например,К – кинематические, Г – гальванические. Тип цифрами, например, 1 – структурные, 2 – функциональные, 3 – принципиальные. Более подробный перечень таких обозначений можно найти в соответствующих таблицах. Таким образом, название может состоять из нескольких обозначений: ЭЗ – это схема электрическая принципиальная; К3 – кинематическая принципиальная.

голоса
Рейтинг статьи
Читайте так же:
Прибор для точки ножей
Ссылка на основную публикацию
Adblock
detector