Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Биполярные транзисторы

Биполярные транзисторы

Биполярные транзисторыТермин «биполярный транзистор» связан с тем, что в этих транзисторах используются носители зарядов двух типов: электроны и дырки. Для изготовления транзисторов применяют те же полупроводниковые материалы, что и для диодов.

В биполярных транзисторах с помощью трехслойной полупроводниковой структуры из полупроводников различной электропроводности создаются два p–n-перехода с чередующими типами электропроводности (p–n–p или n–p–n).

Биполярные транзисторы конструктивно могут быть беcкорпусными (рис.1,а) (для применения, например, в составе интегральных микросхем) и заключенными в типовой корпус (рис. 1,б). Три вывода биполярного транзистора называются база , коллектор и эмиттер .

Биполярные транзисторы

Рис. 1. Биполярный транзистор: а) p–n–p-структуры без корпуса, б) n–p–n-структуры в корпусе

В зависимости от общего вывода можно получить три схемы подключения биполярного транзистора : с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ). Рассмотрим работу транзистора в схеме с общей базой, (рис. 2).

Схема работы биполярного транзистора

Рис. 2. Схема работы биполярного транзистора

Эмиттер инжектирует (поставляет) в базу основные носители, в нашем примере для полупроводниковых приборов n-типа ими будут электроны. Источники выбирают так, чтобы E2 >> E1. Резистор Rэ ограничивает ток открытого p–n-перехода.

При E1 = 0 ток через коллекторный переход мал (обусловлен неосновными носителями), его называют начальным коллекторным током Iк0. Если E1 > 0, электроны преодолевают эмиттерный p–n-переход (E1 включена в прямом направлении) и попадают в область базы.

Базу выполняют с большим удельным сопротивлением (малой концентрацией примеси), поэтому концентрация дырок в базе низкая. Следовательно, немногие попавшие в базу электроны рекомбинируют с ее дырками, образуя базовый ток Iб. Одновременно в коллекторном p–n-переходе со стороны E2 действует много большее поле, чем в эмиттерном переходе, которое увлекает электроны в коллектор. Поэтому подавляющее большинство электронов достигают коллектора.

Эмиттерный и коллекторный токи связаны коэффициентом передачи тока эмиттера

Всегда ∆ Iк ∆ Iэ, а a = 0,9 — 0,999 для современных транзисторов.

В рассмотренной схеме Iк = Iк0 + aIэ » Iэ. Следовательно, схема биполярного транзистора с общей базой обладает низким коэффициентом передачи тока. Из-за этого ее применяют редко, в основном в высокочастотных устройствах, где по усилению напряжения она предпочтительнее других.

Основной схемой включения биполярного транзистора является схема с общим эмиттером, (рис. 3).

Включение биполярного транзистора по схеме с общим эмиттером

Рис. 3. Включение биполярного транзистора по схеме с общим эмиттером

Для нее по первому закону Кирхгофа можно записать Iб = Iэ – Iк = (1 – a)Iэ – Iк0 .

Учитывая, что 1 – a = 0,001 — 0,1, имеем Iб << Iэ » Iк .

Найдем отношение тока коллектора к току базы:

Это отношение называют коэффициентом передачи тока базы . При a = 0,99 получаем b = 100. Если в цепь базы включить источник сигнала, то такой же сигнал, но усиленный по току в b раз, будет протекать в цепи коллектора, образуя на резисторе Rк напряжение много большее, чем напряжение источника сигнала.

Для оценки работы биполярного транзистора в широком диапазоне импульсных и постоянных токов, мощностей и напряжений, а также для расчета цепи смещения, стабилизации режима используются семейства входных и выходных вольтамперных характеристик (ВАХ ) .

Семейство входных ВАХ устанавливают зависимость входного тока (базы или эмиттера) от входного напряжения Uбэ при Uк = const, рис. 4,а. Входные ВАХ транзистора аналогичны ВАХ диода в прямом включении.

Семейство выходных ВАХ устанавливает зависимость тока коллектора от напряжения на нем при определенном токе базы или эмиттера (в зависимости от схемы с общим эмиттером или общей базой), рис. 4, б.

Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные

Рис. 4. Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные

Кроме электрического перехода n–p, в быстродействующих цепях широко используется переход на основе контакта металл–полупроводник – барьер Шоттки (Schottky). В таких переходах не затрачивается время на накопление и рассасывание зарядов в базе, и быстродействие транзистора зависит только от скорости перезарядки барьерной емкости.

Биполярные транзисторы

Рис. 5. Биполярные транзисторы

Параметры биполярных транзисторов

Для оценки максимально допустимых режимов работы транзисторов используют основные параметры:

1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 — 2000 В),

2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 — 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,

Читайте так же:
Средство универсальное wd 40 200мл

3) максимально допустимый ток коллектора Iк макс – до 100 А и более,

4) граничная частота передачи тока fгр (частота, на которой h21 становится равным единице), по ней биполярные транзисторы делят:

  • на низкочастотные – до 3 МГц,
  • среднечастотные – от 3 до 30 МГц,
  • высокочастотные – от 30 до 300 МГц,
  • сверхвысокочастотные – более 300 МГц.

д.т.н., профессор Л. А. Потапов

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Биполярный транзистор. Что он собой представляет, как устроен и как
работает?

Сначала хотел приписать в названии темы: «для начинающих» или «для чайников», но, поразмыслив, пришёл к выводу: «А ведь далеко не каждый электронщик, считающий себя продвинутыми, понимает: как технологически устроен биполярный транзистор, за счёт чего он обладает усилительными свойствами, что влияет на характеристики транзистора и откуда появился этот загадочный зверь — «дырка»«.

Начнём с определения: Биполярный транзистор — это полупроводниковый электронный прибор, работающий по принципу взаимодействия двух, вплотную расположенных на кристалле p-n переходов. А коли прибор полупроводниковый, то это значит, что, как ни крути, а изготовлен транзистор из полупроводниковых материалов таких как: кремний, германий, индий и т.д. А что это такое — полупроводниковый материал или по-простому полупроводник?

Полупроводники по своим свойствам занимают промежуточное положение между проводниками и диэлектриками. При температурах, не сильно отличающихся от абсолютного нуля (-273,15°C), полупроводники обладают свойствами диэлектриков. Однако даже при незначительном повышении температуры, сопротивление полупроводника быстро уменьшается, и он начинает проводить электрический ток — т.е. становится проводящим. За счёт чего это происходит?

С ростом температуры кристалл полупроводника получает некоторую долю энергии в виде тепла, достаточную для того, чтобы часть отрицательно заряженных электронов покинуло свои атомы и перешло в межатомное пространство. Такие электроны называются свободными, а атомы кристаллической решётки, от которых отпочковались электроны, приобретают несбалансирован- ный положительный заряд и получают условное название — «дырка».

Таким образом, при температурах выше -273,15°C в кристалле чистого полупроводника содержится некоторое количество зарядов обоих знаков — свободные электроны и дырки. Если кристалл не содержит примесей, то в любой момент времени количество свободных электронов равно числу имеющихся в кристалле дырок.
Другое дело, если к чистому полупроводнику подмешать некое вещество! В зависимости от свойств этой примеси мы можем получить: либо концентрацию дырок, намного превышающую концентрацию электронов (полупроводник p-типа), либо наоборот — превышение концентрации электронов над концентрацией дырок (полупроводник n-типа).

Итак, p-полупроводник (от англ. positive) — это полупроводник с положительным дырочным типом проводимости, а n-полупроводник (от англ. negative) — с отрицательным электронным типом проводимости.

Ну вот, а теперь можно переходить к описанию структурной схемы транзистора.

Структура биполярных pnp и npn транзисторов

Рис.1

Как следует из рисунка Рис.1, биполярные транзисторы — это приборы, изготовленные на основе трёхслойной полупроводниковой структуры. В зависимости от порядка чередования областей, различают изделия двух типов проводимости: прямой (p-n-p) и обратной (n-p-n).
Легко заметить, что подобная комбинация полупроводников в транзисторе напоминает встречно-последовательное соединение двух диодов с общим катодом (p-n-p) либо анодом (n-p-n). Эта аналогия справедлива лишь в одном случае — она позволяет легко тестировать транзистор на предмет его живучести при помощи обычного омметра или мультиметра.

Рассмотрим цепь, иллюстрирующую работу n-p-n транзистора типа в различных режимах.

Рис.2 а) Режим отсечки тр-ра б) Активный режим тр-ра в) Режим насыщения тр-ра

На Рис.2 приведено классическое включение транзистора n-p-n типа по схеме с общим эмиттером. Положительный вывод источника питания через нагрузку (в качестве которой в нашем случае выступает светодиод) подключается к коллектору транзистора, отрицательный — к эмиттеру полупроводника и для кучи — к земляной шине.

Подадим нулевое смещение на базу транзистора (Рис.2 а)), посредством чего введём его в режим отсечки, соответствующий условию Uэб 0,6—0,7 В (Рис.2 б)) и тем самым переведём его в активный (нормальный) режим. В данном режиме переход база-эмиттер оказывается включённым в прямом направлении (открыт), а переход база-коллектор — в обратном (закрыт):
Поскольку прослойка р-полупроводника базы технологически сделана очень тонкой, положительное напряжение, приложенное к базе, сможет «дотянуться» своим электрическим полем до значительно большей по размеру n-области эмиттера. Под действием этого поля электроны из эмиттера направляются к базе и проникают внутрь неё. Малая часть электронов встречается и рекомбинирует (нейтрализуется) с дырками, являющимися основными носителями базы, но в связи с её малыми размерами (а соответственно и малым количеством дырок) бОльшая часть электронов проходит сквозь базу и доходит-таки до коллекторного перехода.
Уменьшение числа дырок в базе, происходящее в результате рекомбинации, компенсируется источником питания Bat2 и обуславливает ток базы, который, как мы уже поняли — значительно меньше тока эмиттера, который находится в прямой зависимости к интенсивности потока электронов.
Далее под действием электрического поля, создаваемого положительным потенциалом источника Bat1, электроны проникают из базы через p-n-переход в коллектор транзистора, выходят наружу и через источник питания замыкаются обратно в область эмиттера.
Если дальше повышать напряжение на базе, то количество электронов, участвующих в процессе циркуляции по цепи также увеличится. Результатом будет являться незначительное (в абсолютном выражении) увеличение тока базы и значительное увеличение тока коллектора.
А поскольку ток в цепи прямопропорционален интенсивности потока носителей заряда, то, исходя из всего вышесказанного и в соответствии с первым законом Кирхгофа, в транзисторе всегда существует следующее соотношение между токами: Iк = Iэ — Iб .
Величина отношения токов коллектора и эмиттера характеризует такой параметр транзистора, как — коэффициент передачи тока α = Iк / Iэ . Из формул следует, что коэффициент передачи тока транзистора всегда меньше единицы и принимает значение ≈ 0,9-0,99.

Читайте так же:
Холодно твердеющие смеси в литейном производстве

Усиливающее свойство транзистора заключается в том, что посредством относительно малого тока базы можно управлять большим током коллектора. Причём, в активном режиме — изменение тока коллектора прямо пропорционально изменению тока базы: ΔIк = ΔIб x h21э , где h21э (или β) — статический коэффициент передачи тока транзистора. Этот параметр является справочным и для разных полупроводников составляет величину от 10—12 до 200—300.

И последний режим работы транзистора — режим насыщения (Рис 2 в)) или по-умному — режим двойной инжекции.
При дальнейшем повышении уровня напряжения на базе, ток в коллекторной цепи Iк также увеличивается, что приводит (согласно закону Ома) к пропорциональному увеличению падения напряжения на нагрузке и, как следствие — уменьшению напряжения Uк.
При определённом уровне этого напряжения Uк, коллекторный переход база-коллектор начнёт переходить в прямосмещённое (открытое) состояние, т.е. оба p-n перехода транзистора окажутся открытыми. Уровень напряжения на базе, при котором начинается этот процесс, называется Uбэ.нас, является справочной величиной и указывается при неком фиксированном токе коллектора.
Физически, это прямое смещение КП приводит к тому, что не только эмиттер будет засылать (инжектировать) электроны в базу, но и коллектор — тоже. Движение этих коллекторных электронов противоположно направлению диффузионного тока эмиттера и активно препятствует дальнейшему повышению тока транзистора.
В результате этого противостояния, ток коллектора практически перестаёт зависеть от дальнейшего увеличения уровня напряжения на базе и фиксируется на уровне, называемом Iк.нас. Ещё один паспортный параметр, характеризующий работу транзистора в режиме насыщения — Uкэ.нас показывает величину падения напряжения между коллектором и эмиттером при заданном токе коллектора.
В связи с тем, что величина тока Iк.нас может принимать значения, значительно превышающие токи транзистора, находящегося линейном режиме, следует внимательно относиться к выбору коллекторной нагрузки, чтобы не превысить максимально допустимых значений мощностей как самого транзистора, так и нагрузки. В случае, изображённом на Рис 2 в), этот выходной ток будет явно выше 20мА, допустимых для светодиода, что собственно говоря, и отображено на схеме.

Ну и под занавес приведу пример работы транзисторного каскада ОЭ в активном режиме (Рис.3).
Переменный резистор R1 принимает значения от 0 (в верхнем положении) до 680кОм (в нижнем).
В первом приближении — изменением значения напряжения Uбэ можно пренебречь и считать его равным Uбэ ≈ 0,6 В.
Тогда, согласно закону Ома, в верхнем положении потенциометра ток базы будет равен:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/51к = 0,16 мА ,
а в нижнем:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/(51к +680к) = 0,011 мА ,
А поскольку мы помним, что Iк = Iб x h21э , то в верхнем положении R1 — Iк = 16мА , т.е. яркость светодиода близка к максимальной.
В нижнем положении R1 — Iк = 1,1мА , т.е. светодиод не светится, либо светится очень слабо.
В промежуточных положениях ручки потенциометра — токи, а соответственно и яркость свечения, также принимают промежуточные значения.

Читайте так же:
Сварис 200 схема принципиальная pdf

На следующей странице рассмотрим эквивалентную схему транзистора, а также свойства и характеристики различных типов усилительных каскадов.

1. Биполярный транзистор и схемы его включения

Биполярный транзистор содержит два pn перехода, которые образуются тремя слоями полупроводниковых материалов с чередующимися типами проводимостей, как условно показано на рис.1.7. Каждый из слоев снабжен электродом, необходимым для подключения к внешней цепи, и которые называются эмиттер, база и коллектор. Pn переход на границе эмиттерного слоя называется эмиттерным, а pn переход на границе коллекторного слоя называют коллекторным. Возможны два типа транзисторов (pnp и npn) в соответствии с основными носителями заряда в полупроводниковых материалах, используемых в крайних слоях, эмиттерном и коллекторном, а также в среднем, базовом слое. На рис.1.7 также представлены схемные обозначения обоих типов транзисторов.

Назначением эмиттерного слоя является формирование рабочих носителей заряда транзистора. Тип этих носителей определяется проводимостью материала эмиттерного слоя. Следовательно, в транзисторе типа pnp рабочими носителями заряда являются дырки, а в транзисторе типа npn – электроны.

Рисунок 1.7. Схемы структуры биполярных транзисторов

типа npn и pnp и их схемные обозначения

В коллекторном слое осуществляется сбор рабочих носителей заряда, которые при переносе от эмиттера к коллектору проходят базовый слой. В базовом слое часть рабочих носителей заряда нейтрализуется основными зарядами материала этого слоя (процесс рекомбинации), что схематически представлено на рис.1.8 для транзистора типа npn. Биполярные транзисторы изготовляются так, что концентрация основных носителей заряда в эмиттерном слое много больше концентрации основных носителей заряда базового слоя. Кроме того, базовый слой делается тонким. В результате в этом слое нейтрализуется лишь малая часть носителей заряда, поступающая из эмиттера, а основная часть рабочих носителей заряда проходит до коллектора.

Рисунок 1.8. Распределение токов в транзисторе npn

Для обеспечения описанного процесса переноса рабочих носителей заряда в биполярном транзисторе необходимо между его электродами подать напряжения соответствующей полярности от источников ЭДС. Одна из схем включения транзистора приведена на рис.1.8. Чтобы рабочие носители заряда (электроны) из эмиттерного слоя поступали в базовый, эмиттерный переход должен быть открыт, т.е. к эмиттерному электроду должен быть подан “минус”, а к базовому – “плюс”. Чтобы эти носители заряда из базового слоя достигли коллектора, к коллектору должен быть подан “плюс” относительно базы. Таким образом, для основных носителей заряда базового и коллекторного слоев коллекторный переход оказывается закрытым.

Перенос рабочих носителей заряда в транзисторе обусловливает протекание тока во внешней цепи. Поскольку техническое направление тока соответствует направлению переноса положительного заряда, то эмиттерный ток для транзистора типа npn направлен от эмиттера, а коллекторный ток – к коллектору (см. рис.1.8).

Основную часть коллекторного тока составляет поток рабочих носителей заряда. Однако следует учитывать перенос через закрытый коллекторный переход неосновных носителей заряда базового и коллекторного слоев и связанное с этим протекание в коллекторной цепи обратного тока коллекторного перехода I (см. рис.1.8). Таким образом, если ввести в рассмотрение коэффициент передачи тока , показывающий, какая часть рабочих носителей заряда прошла к коллектору, то величина коллекторного тока транзистора может быть определена как

I = I + I. (1.1)

При низких температурах величина обратного тока коллекторного перехода мала. Однако при работе температура транзистора повышается, из-за чего возрастает концентрация неосновных носителей заряда в базовом и коллекторном слоях и существенно увеличивается обратный ток, значение которого удваивается через каждые 8 — 10 С.

Восполнение дырок в базовом слое, с которыми рекомбинируются электроны, поступающие из эмиттерного слоя, осуществляется за счет источников ЭДС внешней цепи. Это обусловливает протекание базового тока, величина которого значительно меньше тока эмиттера, вследствие малой доли рабочих носителей заряда, которые рекомбинируются в базовом слое. В транзисторе типа npn ток базы направлен к этому электроду. Функция базового электрода – управление потоком рабочих носителей заряда. Поскольку величина базового тока мала, то и уровень мощности, потребляемой транзистором на управление, невелик, в результате чего достигается эффективное управление током базы, протекающего через транзистор тока.

Читайте так же:
Относительная деформация при растяжении

Токи транзистора должны удовлетворять первому закону Кирхгофа

I= I + I. (1.2)

Поскольку ток базы мал, часто при расчетах полагают, что I≈ I.

На рис.1.8 представлено включение транзистора по схеме с общей базой (ОБ). Наряду с такой схемой на рис.1.9 представлены еще две возможные схемы включения транзистора: с общим эмиттером (ОЭ) и общим коллектором (ОК). Как видно из этого рисунка, схемы содержат две внешние цепи с соответствующими источниками ЭДС: входная (левые части схем) и выходная (правые части). Наименование схемы включения определяется по электроду, который является общим для двух этих цепей. Во всех трех схемах базовый электрод входит в состав входной цепи, поскольку по базе осуществляется управление работой транзистора. Нагрузка включается в выходную цепь.

Рисунок 1.9. Схемы включения биполярного транзистора типа npn

а — с общей базой, б — с общим эмиттером, в — с общим коллектором

Полярность напряжений источников ЭДС и направления токов, показанные на рис. 1.9, приведены для транзистора типа npn. В случае транзистора типа pnp, в связи с изменением типа рабочего носителя заряда, полярности напряжений источников ЭДС и направления токов должны быть изменены на противоположные.

Входные и выходные токи в трех схемах включения транзистора, а также напряжения между его электродами, определяемые источниками ЭДС, различны и перечислены в табл. 1.2.

Что такое биполярный транзистор и как его проверить

Сегодня мы продолжим знакомиться с электронными «кирпичиками» компьютерного «железа». Мы уже рассматривали с вами, как устроены полевые транзисторы, которые обязательно присутствуют на каждой материнской плате компьютера.

Усаживайтесь поудобнее – сейчас мы сделаем интеллектуально усилие и попытаемся разобраться, как устроен

Биполярный транзистор

Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор, который широко применяется в электронных изделиях, в том числе и компьютерных блоках питания.

Слово «транзистор» (transistor) образовано от двух английских слов – «translate» и «resistor», что означает «преобразователь сопротивления».

Слово «биполярный» говорит о том, что ток в приборе вызывается заряженными частицами двух полярностей – отрицательной (электронами) и положительной (так называемыми «дырками»).

«Дырка» — это не жаргон, а вполне себе научный термин. «Дырка» — это не скомпенсированный положительный заряд или, иными словами, отсутствие электрона в кристаллической решетке полупроводника.

Транзисторы pnp и npn

Биполярный транзистор представляет собой трехслойную структуру с чередующимися видами полупроводников.

Так как существуют полупроводники двух видов, положительные (positive, p-типа) и отрицательные (negative, n-типа), то может быть два типа такой структуры – p-n-p и n-p-n.

Средняя область такой структуры называется базой, а крайние области – эмиттером и коллектором.

На схемах биполярные транзисторы обозначаются определенным образом (см рисунок). Видим, что транзистор представляет собой, по существу, да p-n перехода, соединенных последовательно.

Вопрос на засыпку – почему нельзя заменить транзистор двумя диодами? Ведь в каждом из них есть p-n переход, не так ли? Включил два диода последовательно – и дело в шляпе!

Нет! Дело в том, что базу в транзисторе во время изготовления делают очень тонкой, чего никак нельзя достичь при соединении двух отдельных диодов.

Принцип работы биполярного транзистора

Рабочие токи транзистора

Отношение тока коллектора к току базы называется коэффициентом усиления по току и может составлять величину от нескольких единиц до нескольких сотен.

Интересно отметить, что у маломощных транзисторов он чаще всего больше, чем у мощных (а не наоборот, как можно было бы подумать).

Это напоминает работу полевого транзистора (ПТ).

Разница в том, что в отличие от затвора ПТ, при управлении ток базы всегда присутствует, т.е. на управление всегда тратится какая-то мощность.

Чем больше напряжение между эмиттером и базой, тем больше ток базы и, соответственно, больше ток коллектора. Однако любой транзистор имеет максимально допустимые значения напряжений между эмиттером и базой и между эмиттером и коллектором. За превышение этих параметров придется расплачиваться новым транзистором.

В рабочем режиме обычно переход база-эмиттер открыт, а переход база-коллектор закрыт.

Читайте так же:
С255 гост 27772 88 марка стали аналог

Схема для проверки ключевого режима транзистораБиполярный транзистор, подобно реле, может работать и в ключевом режиме. Если подать некоторый достаточный ток в базу (замкнуть кнопку S1), транзистор будет хорошо открыт. Лампа зажжется.

При этом сопротивление между эмиттером и коллектором будет небольшим.

Падение напряжения на участке эмиттер – коллектор будет составлять величину в несколько десятых долей вольта.

Если затем прекратить подавать ток в базу (разомкнуть S1), транзистор закроется, т.е. сопротивление между эмиттером и коллектором станет очень большим.

Как проверить биполярный транзистор?

Тест транзисторов

Так как биполярный транзистор представляет собой два p-n перехода, то проверить его цифровым тестером достаточно просто.

Надо установить переключатель работы тестера в положение проверки диодов, присоединив один щуп к базе, а второй – поочередно к эмиттеру и коллектору.

По сути, мы просто последовательно проверяем исправность p-n переходов.

Такой переход может быть или открыт, или закрыт.

Открытый переход транзистора

Затем надо изменить полярность щупов и повторить измерения.

В одном случае тестер покажет падение напряжение на переходах эмиттер – база и коллектор – база 0,6 – 0,7 В (оба перехода открыты).

Во втором случае оба перехода будут закрыты, и тестер зафиксирует это.

Следует отметить, что в рабочем режиме чаще всего один из переходов транзистора открыт, а второй закрыт.

Измерение коэффициента передачи биполярного транзистора по току

Гнезда для измерения коэффициента усиления транзистора

Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.

Коэффициент передачи по току – это отношение тока коллектора к току базы.

Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.

Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.

Коэффициент усиления транзистора

Тестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.

Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.

У мощных транзисторов он существенно меньше – несколько единиц или десятков.

Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.

Пара ДарлингтонаПара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.

Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.

Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.

Встроенная диодная защита

Защитный диодНекоторые транзисторы (мощные и высоковольтные) могут быть защищены от обратного напряжения встроенным диодом.

Таким образом, если подключить щупы тестера к эмиттеру и коллектору в режиме проверки диодов, то он покажет те же 0,6 – 0,7 В (если диод смещен в прямом направлении) или «запертый диод» (если диод смещен в обратном направлении).

Если же тестер покажет какое-то небольшое напряжение, да еще в обоих направлениях, то транзистор однозначно пробит и подлежит замене. Закоротку можно определить и в режиме измерения сопротивления – тестер покажет малое сопротивление.

Переход закорочен

Встречается (к счастью, достаточно редко) «подлая» неисправность транзисторов. Это когда он поначалу работает, а по истечению некоторого времени (или по прогреву) меняет свои параметры или отказывает вообще.

Если выпаять такой транзистор и проверить тестером, то он успеет остыть до присоединения щупов, и тестер покажет, что он нормальный. Убедиться в этом лучше всего заменой «подозрительного» транзистора в устройстве.

В заключение скажем, что биполярный транзистор – одна из основных «железок» в электронике. Хорошо бы научиться узнавать – «живы» эти «железки» или нет. Конечно, я дал вам, уважаемые читатели, очень упрощенную картину.

В действительности, работа биполярного транзистора описывается многими формулами, существуют многие их разновидности, но это сложная наука. Желающим копнуть глубже могу порекомендовать чудесную книгу Хоровица и Хилла «Искусство схемотехники».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector