Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Микрометр – измерительный прибор с бескомпромиссной точностью

Микрометр – измерительный прибор с бескомпромиссной точностью

Название микрометра пошло от единицы измерения, которая была взята за основу при проведении замеров этим прибором. В метрической системе мер значение микрона равно одной миллионной доли метра (толщина человеческого волоса равна примерно 40 микронам). В конце XX века эта единица измерения была отменена, и сегодня ею практически не пользуются, а название прибора осталось и оно говорит само за себя – микрометр измеряет с высокой точностью очень мелкие детали.

Где же может пригодиться такой измерительный инструмент? Везде, где требуется получить максимально точные измерения. Его используют в машиностроении, слесарном, токарном и авторемонтном деле. С его помощью можно измерять толщину листов, проводов, проволоки, деталей, стенок цилиндрических элементов, длину уступов, глубину пазов и многое другое. Уже более 100 лет он является незаменимым измерительным прибором на производстве и в частных мастерских.

Отличная альтернатива линейке

Способы линейных измерений всегда заботили людей. Когда более 4000 лет назад перед человеком встал вопрос проведения измерений изделий, подручным средством стала примитивная линейка. Долгие годы именно она использовалась при необходимости линейных измерений в мастерских и строительстве. В 1570 году в устройстве пушечного механизма была использована микропара «винт-гайка», а в 1848 году это изобретение было взято за основу создания первого микрометра, который создал Жан Пальмер. Фамилия французского ученого легла в основу названия этого устройства – микрометр еще называют «пальмером». В 1877 году американской фирмой «Браун и Шарп» устройство микрометра Пальмера было усовершенствовано и вскоре открылось серийное производство этих инструментов. Точность измерений до 0,01 мм – это большой прорыв для промышленности XIX века, который был возможен благодаря появлению микрометра. В том виде, в котором выпускались эти измерительные приборы, они сохранились и до наших дней.

Как мерить микрометром

Устройство состоит из D-образной скобы, с одной стороны которой находится пятка, а с другой – шпиндель и микрометрический винт с гайкой. Деталь помещается в пространство между пяткой и шпинделем, зажимается между ними при вращении винта и фиксируется гайкой. Устройство имеет две шкалы делений: главная находится на «стебле» (как правило, цена деления микрометра на ней составляет 0,5 или 1 мм), а вторая – расположена в виде насечек по кругу барабана (50 или 100 насечек). Полные обороты винта отсчитывают по главной шкале, а доли оборота – по круговой. Таким образом, удается определить значение толщины детали с точностью в 0,01 или 0,001 мм. Точность микрометра в 10 раз может превосходить точность измерений штангенциркуля и в 100 раз – обычной линейки. Это позволяет использовать его для получения размеров мелких деталей, которые используются в механизмах, автомобильных двигателях и других изделиях, где все элементы строго подгоняются под установленный размер.

Современные разновидности микрометров

Технический прогресс заставляет предприятия следовать все более жестким нормативам изготовления деталей, а значит и средства измерений тоже должны идти в ногу со временем. Поэтому сегодня классическое устройство микрометра дополняется и всячески усовершенствуется, чтобы этот инструмент соответствовал самым строгим требованиям и позволял проводить максимально точные измерения.

Трещотка

В конструкции появился такой элемент, как трещотка. Она расположена на конце рукоятки и позволяет точно контролировать необходимое давление на винт при проведении измерений. Ведь при соприкосновении детали со шпинделем возникает усилие и если оно будет слишком сильным, то это может сказаться на точности измерений. Трещотка позволяет избежать этого – ее вращают до тех пор, пока шпиндель не соприкоснется с деталью настолько, чтобы давление не превысило допустимое. Характерные щелчки трещотки говорят о том, что достигнуто правильное положение измерительных плоскостей относительно шпинделя и пятки и вращение следует прекратить. Трещотка присутствует практически во всех современных микрометрах, модификаций которых существует очень много, например, трубные, проволочные, листовые, призматические, канавочные и т.д. Мы же перечислим основные виды, которые наиболее широко применяются в различных отраслях производства.

Особенности

Механический микрометр МК

Механический (МК)

Этот инструмент максимально приближен к классическому устройству микрометра. В основе лежит винтовая пара, а измерительные поверхности пятки и шпинделя отполированы до зеркального блеска, что обеспечивает плотное соприкосновение с деталью и позволяет получить точные замеры. Результат измерений нужно смотреть на шкале насечек: с ценой деления в 0,5 или 1 мм на «стебле» микрометра и обычно в 0,01 мм – на барабане.

Рычажный микрометр МР

Рычажный (МР)

В отличие от обычного прибора, этот имеет подвижную пятку, которая при перемещении вдоль оси воздействует на рычаг. Это приводит в действие зубчатый механизм микрометра, и поступательное движение преобразуется во вращательное. В конструкции предусмотрено механическое табло со шкалой делений и стрелкой – при достаточном усилии зажима детали стрелка показывает результат измерений с точностью до 0,01 мм.

Цифровой микрометр МКЦ

Цифровой (МКЦ)

В отличие от предыдущих двух видов, такой микрометр оснащен электронным цифровым табло, на которое выводятся значения измерений. Благодаря кнопочному управлению, можно выставить значение на нуль одним нажатием, у некоторых моделей предусмотрен выбор единиц измерений между метрической и дюймовой системой мер. Измерения проводятся с точностью до 0,001 мм. Работают такие устройства на батарейках.

Читайте так же:
Проверка емкости батарейки мультиметром

Механические и рычажные микрометры используются как при серийном, так и при штучном производстве, также они часто применяются в автослесарных и ремонтных мастерских. С их помощью можно провести точные замеры при замене износившихся деталей и элементов механизмов. А вот на поточном производстве оборудования или электротехнических товаров, когда необходимо измерять не только толщину деталей, но и, например, сечение проводников, необходимы более точные измерения, поэтому там используют цифровые модели микрометров. Чем еще руководствоваться при выборе, расскажем далее.

Знание основных параметров – залог правильного выбора

Чтобы убедиться в том, что микрометр действительно подходит под специфику Вашей деятельности и во время измерений не возникнет никаких сложностей, при выборе нужно учесть несколько важных характеристик.

Диапазон измерений. От этого параметра зависит то, какие по толщине детали Вы сможете поместить между шпинделем и пяткой и, следовательно, сделать замер. У разных моделей диапазон может быть, например, в пределах от 0 до 25 мм или от 100 до 125 мм. Выбор следует делать, исходя из того, с какими деталями Вам предстоит работать чаще всего.

Точность измерений зависит от шага резьбы у микрометрического винта. Шаг резьбы равен цене делений на «стебле». Точность измерений (или как еще говорят — величина отсчета) будет равна значению, полученному при делении значения шага резьбы на количество делений шкалы барабана. Например, если шаг резьбы составляет 0,5 мм, а количество насечек на круговой шкале равно 50, то с помощью такого микрометра можно получать данные с точностью до 0,01 мм. Более точными являются модели с показателем величины отсчета в 0,001 мм.

Важно знать. При работе в различных температурных условиях и при измерении деталей разной величины допустимы отклонения от указанного показателя. Значение погрешности устанавливается на заводе производителем, когда осуществляется поверка микрометров (должен прилагаться подтверждающий документ). У разных изделий значение отклонения может составлять от 0,002 до 0,03 мм (в зависимости от вида и модели). Если же погрешность микрометра превышает это значение, необходимо сделать калибровку.

Будьте уверены, этот прибор поможет сэкономить время, силы и материальные затраты. Ведь он позволяет легко получить точные измерения, что исключает риск выпуска бракованных деталей и изделий. А купить микрометр, подходящий для Ваших работ, Вы можете прямо сейчас в нашем интернет-магазине. В ассортименте представлены модели таких производителей как Legioner, MATRIX, Энкор, Вы можете выбрать как механический, так и цифровой прибор. Не откладывайте покупку – работайте с качественным измерительным инструментом!

Окуляр-микрометр. Измерения в микроскопии. Часть 2

В предыдущей статье мы рассказывали от типах окуляр-микрометр и их назначении. В этой статье мы продолжим эту тему несколькими методиками измерений.

Для измерения больших объектов и для повышения точности измерений используется винтовой окуляр-микрометр. Отсчетный механизм его состоит из шкалы (от 0 до 8 мм) с интервалами между делениями в 1 мм, нанесенной на неподвижной стеклянной пластинке, и сетки в виде двух рисок с перекрестием, нанесенной на подвижной стеклянной пластинке, а также микрометренного винта с отсчетным барабаном. Обе пластинки расположены в фокальной плоскости окуляра. Подвижная пластинка с рисками и перекрестием связана с микрометренным винтом так, что при его вращении перекрестие и риски перемещаются в поле зрения окуляра относительно неподвижной шкалы. Шаг винта равен 1 мм. Таким образом, при повороте барабана винта на один полный оборот, риски и перекрестие в поле зрения окуляра переместятся на одно деление шкалы. Следовательно, неподвижная шкала в поле зрения служит для отсчета полных оборотов барабана винта, т.е. для отсчета полных миллиметров, на которые перемещается перекрестие и риски окуляр-микрометра. Барабан винта разделен на 100 частей. При шаге винта в 1 мм поворот барабана на одно деление соответствует перемещению перекрестия и рисок на 0,01 мм. Таким образом, шкала барабана служит для отсчета сотых долей миллиметра.

Полный отсчет по шкалам окуляр-микрометра складывается из отсчета по неподвижной шкале и отсчета в поле зрения определяется положением перекрестия и рисок, т.е. подсчитывается, на сколько полных делений шкалы они переместились, считая от нулевого деления шкалы. При отсчете по барабану микрометренного винта, определяют, какое деление шкалы барабана приходится против индекса, расположенного на подвижной части винта. Пределы измерения винтовым окуляр-микрометром — от 0 до 8 мм.

1. Линейное измерение объектов.

Величина объектов измеряется единицами длины микрометрами (мкм), которые раньше назывались микронами.

Изображение объектов под микроскопом измеряется окуляр-микрометром в делениях его шкалы. Поворотом окуляра, в который вложен окуляр-микрометр, и перемещением препаратоводителя на столике микроскопа, совмещают шкалу окуляр-микрометра с измеряемым объектом по направлению измерения. Определяют сколько делений окуляр-микрометра приходится на длину (ширину) объекта. При работе с винтовым окуляр-микрометром, наблюдая в окуляр и вращая барабан по часовой стрелке, подводят центр перекрестия до совмещения с краем измеряемого объекта и делают первый отсчет по шкалам окуляр-микрометра по положению рисок.

По шкале в поле зрения отсчитывают полные мм, а по шкале барабана — сотые доли мм. Таким образом подводят перекрестие до совмещения его центра с изображением второго края измеряемого объекта и делают второй отсчет по шкалам микрометра. Вычисляют разность отсчетов, которая является величиной изображения объекта.

Читайте так же:
Схема подключения пускателя на 220 вольт

Например, первый отсчет по окуляр-микрометру равен 3,52 мм; второй отсчет равен 3,64 мм. Величина изображения объекта = 3,64 мм — 3,52 мм = 0,12 мм (120 мкм).

Для выяисления абсолютной величины объекта нужно определить цену деления окуляр-микрометра. Для этого на предметный столик микроскопа, вместо препарата помещают объект-микрометр, находит его шкалу и совмещают ее со шкалой окуляр-микрометра. Определяют сколько делений окуляр-микрометра приходится на какое-то определенное, возможно большее, число делений объект-микрометра.

Высчитывают цену деления окуляр-микрометра: L = (N x s)/ n, где

L- Цена деления окуляр-микрометра

N- Число делений объект-микрометра

S- Цена одного деления объект-микрометра (см. маркировку)

n- Число делений окуляр-микрометра, совпадающих с числом делений объект-микрометра

Пример: 40 делений окуляр-микрометра точно совпадают с 9 делениями объект-микрометра. Цена деления объект-микрометра равна 0,01 мм (10 мкм).

Расчитаем цену одного деления окуляр-микрометра: L = (9 х 0,01 мм)/40 = 0,00225 мм » 2 мкм.

Таким образом, цена деления окуляр-микрометра при данной комбинации окуляра и объектива равна двум мкм. Цена деления окуляр-микрометра зависит от комбинации окуляра и объектива, а также от длины тубуса микроскопа. Поэтому она определяется для каждого сочетания окуляра и объектива, применяемого для измерения, и записывается. При работе на одном микроскопе можно один раз определить цену деления окуляр-микрометра при различных комбинациях окуляров и объектвов и использовать полученные величины при последующих измерениях. При работе с объективами, у которых имеется коррекционное устройство на толщину покровного стекла, все сравнительные измерения проводят при одинаковом его значении.

Абсолютную величину объекта вычисляют, умножая величину изображения объекта, определенную в делениях окуляр-микрометра на цену деления окуляр-микрометра.

В нашем примере: абсолютная величина объекта = 120 мкм х 2 мкм= 240 мкм.

2. Определение увеличения (масштаба) изображения на микрофотографиях и рисунках.

Для определения увеличения микрофотографий фотографируют шкалу объект-микрометра при тех же комбинациях окуляра, объектива и увеличения фотонасадки, если их несколько, как у МФН-II, при которых проводилась съемка объекта. Негативы с указанием значения окуляра и объектива хранить в фототеке. При печати микроснимков при этом же увеличении фотоувеличителя печатают и фотографию шкалы объект-микрометра. На фотоотпечатке линейкой измеряют величину нескольких делений шкалы объект-микрометра или всю шкалу. Полученное число делят на абсолютную величину этого отрезка шкалы объект-микрометра (число делений объект-микрометра, умноженное на абсолютную величину одного деления объект-микрометра; абсолютную величину одного деления объект-микрометра определяют по маркировке на пластинке объект-микрометра). Это число и есть кратность увеличения изображения на микрофотографии. Для определения увеличения рисунка, проецируют на этот рисунок рисовальным аппаратом шкалу объект-микрометра (при той же оптике, при которой выполнялся рисунок) и зарисовывают часть шкалы объект-микрометра. Затем производят те же измерения и подсчеты, что и при определении увеличения на микрофотографиях.

Например, изображение семи делений объект-микрометра на рисунке или микрофотографии равны 18 мм. Абсолютная величина одного деления объект-микрометра (по маркировке на нем) равна 0,01 мм. Абсолютная величина семи делений объект-микрометра = 7 х 0,01 = 0,07 мм (70 мкм).

Увеличение изображения= 18 мм (18000 мкм)/ 0,07 мм (70 мкм) = 257

Можно на рисунках для печати изобразить небольшой отрезок шкалы объект-микрометра, с указанием абсолютной величины этого отрезка в мкм.

3. Определение абсолютной величины объекта по его рисунку.

При проецировании шкалы объект-микрометра на рисунок можно по изображению объекта на рисунке вычислить абсолютную величину объекта без измерения его окуляр-микрометром. Величина объекта на рисунке и величина отрезка шкалы объект-микрометра на рисунке измеряется линейкой.

S = (B x K) / b , где

S — Абсолютная величина объекта;

B — абсолютная величина отрезка шкалы (нескольких делений) объект-микрометра;

K — величина объекта на рисунке;

b — величина отрезка шкалы объект-микрометра (нескольких делений) на рисунке.

Пример: Величина изображения объекта на рисунке равна 62 мм. Произвольный отрезок спроецированной шкалы объект-микрометра на рисунке равен 22 мм и включает в себя 10 делений объект-микрометра. Абсолютная величина этого отрезка шкалы объект-микрометра равна числу делений в нем, умноженному на абсолютную величину одного деления (по маркировке на пластинке объект-микрометра), т.е. 10 х 0,01 мм = 0,1 мм.

Абсолютная величина объекта = (0,1 мм х 62 мм) / 22 мм = 0,282 мм = 282 мкм.

Все подсчеты проводятся в одних единицах измерения в мм, а конечный результат можно перевести в мкм (1 мм = 1000 мкм).

4. Определение "линейного увеличения" объектов.

Кроме абсолютной величины объектов, в цитологических исследованиях используется показатель "линейное увеличение" т.е. отношение величины изображенного на рисунке объекта к абсолютной величине объекта. Способы определения величины объекта на рисунке и абсолютной величины объекта описаны выше.

Если взять данные из предыдущего примера, где величина изображения объекта на рисунке равна 22 мм, а абсолютная его величина равна 0,282 мм, то линейное увеличение объекта = 22 мм / 0,282 мм = 78.

5. Измерение длины с помощью крестообразного столика (препаратоводителя) микроскопа [1].

Линейной мерой объекта в двух измерениях служит продольное и поперечное смещение столика относительно делений шкалы нониуса. При этом возможны точные змерения от 0,1 мм и приблизительные — до 0,05 мм. Для этого применяют окуляры с перекрестием или с указателем. Препаратоводитель смещают до совпадения точки измеряемого объекта, принятой за начало отсчета, с перекрестием и отмечают показания измерительной шкалы. Затем продольным или поперечным движением препаратоводителя достигают конечной точки отсчета и вновь отмечают показания. Разность показаний является линейной мерой исследуемого объекта.

Читайте так же:
Схема подключения коллекторного электродвигателя

6. Измерение длины с помощью счетной камеры [1].

В качестве вспомогательного приспособления для измерения длины можно применять камеру для подсчета элементов крови. Дно отсчетной камеры разделено на квадраты различной длины. Длина сторон наименьшего квадрата равна 0,05 мм, "Группового квадрата" — 0,2 мм и большого квадрата — 1 мм. Измеряемый объект помещают в счетную камеру и определяют его длину путем сравнения его с длиной сторон квадратов счетной камеры.

7. Пересчет количества структурных элементов (устьиц, волосков и др.) на единицу площади (1 кв.мм) органа, ткани.

Сначала необходимо вычислить площадь поля зрения микроскопа (при той же комбинации объектива и окуляров, при которой будет проводиться подсчет) по формуле

S — площадь поля зрения микроскопа,

r — радиус поля зрения микроскопа,

Диаметр поля зрения микроскопа (d) измеряется объект-микрометром, значение диаметра делится на 2 и получается значение радиуса для прведенной выше формулы. Зная цену деления объект-микрометра (см. маркировку на пластинке объект-микрометра), легко вычислить диаметр поля зрения микроскопа. Затем подсчитывают количество изучаемых структурных элементов в поле зрения микроскопа (при условии, что изучаемая ткань или орган занимают все поле зрения микроскопа):

A = W x (1 мм 2/S) , где

A — Количество изучаемых структурных элементов на единицу площади в 1 мм 2

W — Количество их в поле зрения микроскопа

S — Площадь поля зрения микроскопа (мм 2)

Отношение (1 мм 2 / S) является постоянным коэффициентом для данной оптики, на который можно умножить подсчитанное количество структурных элементов в поле зрения, не составляя каждый раз уравнения.

d = 420 мкм = 0,42 мм;

r = 210 мкм = 0,21 мм;

S = 3,1416 х 0,0441 = 0,138 мм 2

В поле зрения подсчитано 52 устьица. 52 устьица приходится на площадь 0,138 мм 2 . Х устьиц приходится на площадь 1 кв.мм:

Х = 52 х (1:0,138) = 52 х 7,25 = 373 устьица.

Таким образом, на площадь листа в 1 кв.мм приходится 373 устьица. 7,25 — постоянный коэффициент для данной оптики.

8. Измерение толщины объекта.

При измерении толщины пользуются микрометрическим винтом микроскопа. Сначала наводят на резкость верхнюю поверхность измеряемого объекта, а затем нижнюю. Отмечают разность в обоих положениях микровинта по делениям, которые на нем имеются. Эти деления обычно соответствуют микрометрам. При применении иммерсинных объективов эта величина равна толщине объекта; при объективах сухих систем ее надо умножить на 1,5, т.е. на соотношение между показателями преломления стекла и воздуха.

9. Методы нахождения определенных участков препарата.

1. Для того, чтобы вновь быстро найти нужное место на препарате проще всего его маркировать: не вынимая препарата со столика микроскопа и не выключая освещения, поставить на покровном стекле точку тушью слева от нужного места, а затем вынуть препарат и перенести эту точку на нижнюю сторону препарата (на предметное стекло), так как при работе с иммерсией на верхней стороне препарата эта точка может быть смыта.

2. При наличии на столике микроскопа препаратоводителя со шкалами, можно отметить и записать расположение нужного места на препарате по показаниям вертикальной и горизонтальной шкалы. Этот способ пригоден при повторных просмотрах препаратов только на этом же микроскопе.

Микрометр

image006

Микрометр – это универсальный измерительный прибор для высокоточного (с погрешностью от 2 до 50 мкм) определения линейного размера детали. Измерение может быть произведено абсолютным или относительным контактным методом с погрешностью достаточной для точной сборки узлов и станочного производства.

Устройство и применение микрометров

Как универсальный измерительный инструмент применение микрометра возможно в любой области, где необходимо определение линейных размеров с точностью от 2 мкм. Это, в первую очередь, механическая обработка деталей, точная сборка узлов и механизмов, настройка работы промышленного оборудования и мн. другое.

Устройство микрометра достаточно простое, в конструкцию инструмента входит всего три основных элемента:

  • Рама в виде полукруга оснащенная опорной стойкой (1) для фиксации измеряемой детали.
  • Ручка, оснащенная трещоткой (6), неподвижным стеблем (4) со шкалой и измерительным барабаном (5).
  • Винт (2) с неподвижной гайкой (3) для измерения линейных величин.

Замер с помощью микрометра выполняется посредством перемещения винта в неподвижной гайке. По углу оборота винта и определяется перемещение и рассчитывается линейный размер. Количество полных оборотов указано на стебле, доли – по круговой шкале на барабане. Инструмент также оснащен устройством кольцевой гайкой для фиксации.

Для обеспечения точности измерений передвижение микрометрического винта не должно превышать 25 мм. Поэтому микрометры выпускаются в пределах 0–25, 25–50 мм и т. д., до 300 мм, с дальнейшим шагом 100 мм. — 300–400, 400–500 и т. д.

Принцип действия микрометров

Для примера возьмём обычные механические гладкие микрометры, получившие наиболее широкое применение. Данный инструмент позволяет производить замер абсолютным и относительным способом. При абсолютном замере измеряемая деталь размещается между опорной стойкой и передвижным винтом. Полученный размер можно определить непосредственно по шкале. При относительном измерении определяется размер рядом распложенных предметов и затем вычисляется нужный параметр.

Сам замер производится в следующей последовательности:

  • Проверить точность прибора. Необходимо закрутить винт и проверить – совпадает ли нулевая отметка на шкале барабана с горизонтальным штрихом на стебле.
  • Если предел измерений более 25 мм, то для проверки необходимо использовать эталонные меры.
  • При несовпадении меток необходимо отрегулировать стебель специальным ключом (входит в комплект).
  • Перед началом измерения винт выкручивается до размера немного более размера детали.
  • Измеряемая деталь размещается между винтом и неподвижным упором.
  • Винт необходимо зажать с помощью трещотки до характерного звука срабатывания – трещотка начинает проворачиваться, закрутка микровинта останавливается после 3 щелчков.
  • Определяем показание по трем шкалам. Первые две расположены на стебле и одна на барабане. По штрихам в верхней части шкалы определяется количество полных миллиметров. К ним прибавляем, если возможно, половину второй шкалы, т. е. ещё 0,5 мм.
  • В завершение прибавляем значение со шкалы барабана в соответствие с ценой деления шкалы, например 0,01 мм.
  • Окончательный итог определяется суммированием всех трех показаний.
  • Для получения максимально точного результата рекомендуется проведение нескольких замеров с расчетом среднего значения.
Читайте так же:
Чем резать плинтус пвх напольный

Типы микрометров

Для различных объектов измерения выпускаются следующие типы микрометров:

  • Микрометры листовые – для замера толщины листов.
  • Гладкие микрометры – для определения размера предметов с гладкой поверхностью.
  • Микрометры рычажные – оснащены рычажно-зубчатой головкой для замера изделий со сложной конфигурацией.
  • Трубные микрометры – для определения размеров стен труб.
  • Проволочные и резьбомерные – для замера тонких изделий.
  • Цифровые микрометры – оснащены электронной системой определения размера и цифровой шкалой.

Микрометры цифровые

Вместе с механическими, цифровые микрометры пользуются большой популярностью благодаря удобству и точности измерения, а также возможностям электронных приборов:

  • Производить замер с точностью до 1 мкм при погрешности до 0,1 мкм.
  • Встроенная калибровка.
  • Удобное цифровое табло для максимально быстрого и точного получения результата.
  • Выбор систем расчета.
  • Вывод информации на ПК и мн. другое в зависимости от модели.

Государственные стандарты

Основной стандарт регулирующий технические условия производства инструмента – ГОСТ 6507-90

Китайский цифровой микрометр, который приятно удивил.


Прибор на современном рынке представлен множеством типов и моделей, которые по принципу действия и правилам эксплуатации не имеют существенных различий. Исключением являются лишь электронные и лазерные приборы.

Название инструмента указывает размерную величину, в пределах которой прибор способен с достоверной точностью определить размер детали. Один микрон — очень мелкий параметр; на практике чаще пользуются точностью в 50 микрон — это величина, значение которой может повлиять на результат сборочных работ либо настройку детали.

Приемы измерения микрометром — абсолютный и относительный. При первом варианте разъем прибора прилагается непосредственно к поверхности детали. Зажимы для крепления выставляются в соответствии с геометрией измеряемой детали. Показания в микронах снимаются согласно измерительным шкалам.

Относительный метод основан на данных, снятых при измерении предметов, которые находятся в непосредственной близости к искомому объекту обмера. В дальнейшем с их помощью косвенным математическим путем устанавливаются искомые параметры этого предмета.

UnitJuggler unit converter

Absorbed dose converter

Convert Gray, Rad, J/kg.

Acceleration converter

Convert ms-2, fts-2, gal, etc.

Angle converter

Convert degrees, radians, grads, arc units, angular mils, etc.

Area converter

Convert metric units, square miles, square inches, etc.

Bandwidth converter

Density converter

Convert Pounds per Gallon, Kilogram per cubic metre, Gramm per Millilitre, etc.

Electric charge converter

Convert coulomb, amperehour, faraday, etc.

Energy converter

Convert Kilojoules to Kilocalories, convert Joules to Calories, KiloWattHours to Ergs, etc.

Equivalent dose converter

Convert Sievert to rem.

Force converter

Convert pounds (pound-force), kiloponds, newton, etc.

Foreign exchange converter

Convert Euro, Dollar, Pounds, Rupies, Yen, etc. Also convert from and to old european currencies. Daily updated exchange rates !

Frequency converter

Convert Hertz, Fresnel, cycler per second & periods

Fuel consumption converter

Convert Litre/100km, Miles/Gallon, Gramm CO2 per km, etc.

Illuminance converter

Convert lux, phot, nox, lumen per square meter, etc.

Length converter

Convert metric units, miles, inches, feet, nautical miles, light-years, astronomical units, etc.

Mass converter

Convert kilograms, tonnes, (avoirdupois, troy and metric) pounds, hundredweights, carats, etc.

Memory size converter

Convert CD’s, DVD’s, KiloBytes, MegaBytes, TeraBytes, MebiBytes, Bits, etc.

Number Systems converter

Convert hexedecimal numbers, binary numbers, octal numbers, decimal numbers, Binary coded decimal numbers.

Power converter

Convert Watt, horsepowers, Kilowatts, etc.

Pressure converter

Convert Pascal, mmHg, Bar, Atmospheres, etc.

Radioactive decay converter

Convert Becquerel, Curie & Rutherford units.

Speed converter

Convert meters per second, kilometers per hour, miles per hour, minutes per kilometer, seconds per mile, knots, speed of light, Mach, etc.

Temperature converter

Convert between Kelvin, Celsius, Fahrenheit, Rankine, Delisle and more …

Time converter

Convert years, weeks, days, hours, minutes, secondes, etc.

Volume converter

Convert litres, cubic meters, oil barrels, pints, teaspoons, fluid ounces, gallons (imperial or u.s. liquid), etc.

Volumetric flow rate converter

Please counter-check the results. Despite thorough controls by our means, rounding errors and other errors are possible. Use at your own risk.

search | contact | imprint | privacy | terms of use

Читайте так же:
Температура огня газовой плиты

©2008-2016 (UnitJuggler v.40)

Устройство прибора

Винт и гайка — вот самое простое описание механической конструкции микрометра. Сложными и тщательно выверенными являются шкалы, предназначенные для снятия измерений.

Стандартная модель измерительного прибора состоит:

  1. Скоба, имеющая достаточную жесткость. Даже мелкие деформации этой детали способны повлиять на точность измерений. Дефекты скобы свидетельствуют о непригодности измерительного устройства к работе;
  2. Пятка — обычно реализована как элемент части корпуса прибора. Существуют также виды микрометры со съемной пяткой. Такая модификация устройства предназначена для измерений в диапазоне от 500 до 800 мм;
  3. Микрометрический винт (шпиндель) вращается за счет передвижения трещотки;
  4. Устройство стопорное реализовано в виде винтового зажима, служит фиксатором микрометрического винта при снятии показаний измерительных величин или настройке микрометра;
  5. Стебель имеет основную и дополнительную измерительные шкалы для определения размерных величин детали. Основная показывает целые значения (миллиметр), а дополнительная — половинные;
  6. Барабан рассчитан для измерения десятых и сотых доли мм и служит указателем шкалы стебля;
  7. Трещотка регулирует напряжение, при котором контактируют прибор и предмет измерения, а также способствует вращению микрометрического винта;
  8. Эталон — деталь дополнительно входит в комплект устройства и необходима для настройки точности и проверки работоспособности микрометра.

МИКРОМЕТР МИКРОМЕТР. Рис. 1

Микрометры цифровые

Вместе с механическими, цифровые микрометры пользуются большой популярностью благодаря удобству и точности измерения, а также возможностям электронных приборов:

  • Производить замер с точностью до 1 мкм при погрешности до 0,1 мкм.
  • Встроенная калибровка.
  • Удобное цифровое табло для максимально быстрого и точного получения результата.
  • Выбор систем расчета.
  • Вывод информации на ПК и мн. другое в зависимости от модели.

Процесс измерения и показания

В начале работы необходимо расположить измерительную деталь между пяткой прибора и микрометрическим винтом. Начать вращение барабана с учетом максимальной близости шпинделя и измеряемого предмета.

При измерениях микрометр находится в левой руке. Во избежание нагрева от температуры тела и искажения результатов держать прибор следует за изолированную часть скобы.

Размеренно и не спеша до соприкосновения с измеряемой поверхностью подводится шпиндель устройства. Крутить его следует по направлению против часовой стрелки относительно торца с нарезкой пока деталь не зайдет в зазор торцов. Далее, необходимо по часовой стрелке довести вращение шпинделя до упора, придерживая в процессе нарезки барабан.

При достижении упора вращение начнет сопровождаться треском. Вращение микрометрического винта следует прекратить и можно приступать к снятию показаний. Освобождается деталь из зажима обратным вращением шпинделя. Точный размер замеряется на барабане с помощью шкалы нониуса.

Показания прибора. При работе по снятию величин измерений механическим прибором требуется некоторая сноровка. Начинаем снимать показания с более крупного разряда цифр и оканчиваем мелким.

Для начала обратим внимание на шкалу стебля на неподвижной части рукоятки. Она содержит две шкалы, которые для комфортного восприятия расположены в позиции остановки края барабана, зафиксируем значение деления нижней шкалы (допустим, 8). Оно находится в зоне видимости. Так определяется величина первого цифрового показания.

Необходимо понимать, что за этим измерительным прибором необходим постоянный уход, так как он имеет свойство периодически ломаться и расфокусировываться.

Помимо очевидных предостережений о том, что устройство нужно беречь от падений и ударов, его также нужно постоянно чистить и проводить калибровку.

Во избежание погрешностей (а в отдельных отраслях, например в металлургии, даже небольшие погрешности могут привести к катастрофическим результатам) поверхности тисков рекомендуется прочищать тряпочкой после каждого использования.

Хранить инструмент лучше в отдельном чехле или футляре, а лучше всего накрыть легким поролоновым ковриком.

Основные разновидности

В зависимости от длины передвижного шпинделя (винта) микрометры классифицируют по типоразмерам. Приборостроительная промышленность производит устройства для измерения размера деталей в диапазонах:

  1. от 0 до 25 мм,
  2. от 25 до 50 мм,
  3. от 50 до 75 мм,
  4. до 500−600 мм.

Ряд измерительных приборов дополнительно укомплектован установочными концевыми мерами для возможности выставления устройства в позицию «на ноль».

Микрометры имеют различие по видам (по ГОСТ 6507–90 ) в зависимости от назначения и конструктивной принадлежности (ручные и настольные).

Широко распространены в использовании следующие виды измерительных микрометров:

  1. гладкие — предназначены мерить наружные размеры;
  2. листовые — для толщины лент и листов, оснащены стрелочным циферблатом;
  3. трубные — для толщины трубных стенок;
  4. проволочные — для толщины проволоки;
  5. микрометрические головки — для измерения перемещения;
  6. зубомерные — измеряют нормали зубчатых цилиндрических колес, что важно для контроля качества при их производстве.

Помимо отображенных в ГОСТ, используются и другие виды инструмента:

  1. рычажные микрометры — принцип действия прибора основан на механизме измерения линейных величин с помощью метода сравнений и оценок (модель МРИ);
  2. микрометры призматические — для измерения внешнего диаметра инструмента со множеством лезвий (серия МТИ, МПИ, МСИ);
  3. нутромеры микрометрические — для измерения внутренних параметров различных деталей (НМ, НМИ);
  4. канавочные;
  5. резьбомерные;
  6. универсальные и прочие.

Электронный инструмент

Для скоростных обмеров предназначены приборы с наличием электронной «цифровой» индикации, значение произведенных измерений у которых отображается на отдельном табло (к примеру, микрометр модифицированный МК — МКЦ).

Современные микрометры с цифровой индикацией имеют ряд определенных достоинств:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector