Montagpena.ru

Строительство и Монтаж
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Число оборотов при тонком точении

MACHINE-TOOLS

Этот метод точения широко применяют в авиационной, тракторной и автомобильный промышленности при обработке цилиндрических и конических поверхностей (наружных и внутренних), а также торцовых поверхностей, уступов и др. Чистота обработанных поверхностей получается 8-11-го классов чистоты, а точность размеров деталей соответствует 2-му, и иногда и 1-му классу точности. Более высокая точность получается при обработке цветных металлов, так как при обработке сталей и чугунов на точности сказывается износ резца по задней поверхности. Тонкое растачивание, в особенности цветных металлов, по точности и чистоте поверхности превосходит развертывание и не уступает шлифованию.

К станкам для тонкого точения предъявляют следующие требования:

  1. повышенные числа оборотов шпинделя (2000-6000 об/мин);
  2. малые подачи (0,01-0,2 мм/об);
  3. высокая точность вращения шпинделя (радиальное биение — не более 0,005 мм), высокая точность и большая жесткость всех элементов станка;
  4. отсутствие вибраций при больших числах оборотов шпинделя.

В крупносерийном производстве для тонкого точения использую особо точные станки, так как обычные токарно-винторезные станки не обеспечивают выполнения требований, указанных выше: они не имеют больших скоростей и малых подач; при работе на них обычно не удается устранить полностью вибраций.

Режущий инструмент для тонкого точения. В качестве режущего инструмента для тонкого точения применяют:

  1. Резцы с пластинками твердого сплава марок ВК2 и ВК3М для тонкого обтачивания и растачивания чугуна; Т30К4 и Т60К6 для тонкого точения и растачивания стали, легких сплавов и цветных металлов.
  2. Алмазные резцы — для тонкого точения и растачивания легких сплавов, цветных металлов и неметаллических материалов.

Величина углов заточки резцов, оснащенных пластинками твердого плава, применяемых при тонком точении, приведена в таблице 5.

Для тонкого точения и растачивания деталей из легких сплавов (алюминия, сплавов алюминия с кремнием), цветных металлов (меди, латуни, бронзы) и неметаллических материалов (пластмассы и др.) применяют также и алмазные резцы.

Алмазные резцы значительно долговечнее твердосплавных резцов. Они позволяют работать сотни часов без переточки и переналадки и тем самым обрабатывать большое количество одинаковых деталей с соблюдением точности размеров, достигающей 2-го и даже 1-го класса, и чистоты поверхности Δ 8 — Δ 11.

Алмазные резцы изготовляют двух видов: а) с напаянными алмазами (рис. 180) и б) с механических креплением алмаза в державке (рис. 181). Дря резцов использую кристаллы алмазов массой 0,2-0,6 карата (1 карат равен 0,2 г).

Передняя поверхность у алмазных резцов делается плоской.

Рекомендуемые скорости резания, глубины резания и подачи при обработке алмазами приведены в таблице 6.

При работе алмазными, а также твердосплавными резцами при тонком точении необходимо соблюдать следующие правила:

Число оборотов при тонком точении

алмазное точение

Назначение и сущность. Тонким точением обрабатывают наружные и внутренние поверхности с точностью до 1—2 классов и чистотой 8—10 классов. Такой вид обработки во многих случаях может заменить шлифование.

Сущность алмазного точения состоит в срезании небольшого слоя металла с очень малой подачей и большой скоростью резания.

Требование к станкам для тонкого точения. Станки должны быть жесткие, точные (радиальное биение шпинделя не более 0,005 мм), быстроходные (число оборотов не менее 2000 o6jмин) и иметь подачи менее 0,1 мм>об. Лимбы или индикаторные упоры должны позволять установку резцов на размер с точностью не менее 0,01 мм.

Не прибегая к специальным устройствам, точность подачи резца на глубину резания на любом токарном станке можно увеличить, пользуясь лимбом верхних салазок, повернутых на некоторый ) гол а к оси центров станка.

Применяемые резцы. Резцы для алмазного точения оснащаются пластинками твердого сплава марок ВК2 или БКЗМ для обработки чугуна и Т30К4 для сталей. Для цветных металлов и пластмасс применяют алмазные резцы. У алмазного резца токарного станка угол заострения составляет обычно 80 градусов

После заточки резцы обязательно доводятся. Главная режущая кромка должна быть острой, без фаски. Завалы или незначительные зазубрины на ней недопустимы.

Вершина скругляется радиусом 0,5—1 мм.

Передний угол у для твердосплавных резцов при обработке стали от —5° до 4-5°, для чугуна — 0°. Для алмазных резцов при обтачивании у= — 4°, при растачивании Задний угол выполняется в пределах 6—12°.

Читайте так же:
Перфоратор работает но не долбит

Припуски н режимы резания. Припуск под тонкое точение оставляют в пределах 0,25—0,4 мм на диаметр при диаметре детали до 125 мм.

Режимы резания обычно ограничиваются возможностями станка. Их рекомендуется выбирать в следующих пределах; глубина резания 0,05—0,2 мм; подача при предварительной обработке 0,1—0,2 мм/об, при окончательной — 0,02—0,08 мм/об; скорость резания для черных металлов 100—200 м/мин, для цветных — 200—500 м/мин. При тонком алмазном точении и растачивании снимается стружка весьма малого сечения, порядка 0,01-0,02 мм2

алмазное точение металлов

алмазное точение деталей оптики

алмазное точение полирование притирка доводка рифление поверхности

алмазное точение и растачивание

Смотрите также:

Токарный станок и токарное дело. Столярные работы. — Приспособление для выделки тел вращения из дерева и других твердых материалов

Токарные станки с ЧПУ. Наладка и эксплуатация токарных станков.

Гидро- и пневмоприводы токарных станков. Автоматизация и механизация токарной обработки.

Автоматизация и механизация токарной обработки. 17.1. Общие сведения.

19.3. Конструктивные особенности токарных станков с ЧПУ.
Фрезерное дело. Основные сведения о фрезеровании.

Слесарное дело.
Наиболее многочисленную группу металлорежущих станков составляют токарные станки ( 45).

Токарный станок токарное дело. Точеные изделия находятся во множестве между египетскими древностями, а станки … Т. станки с маточным винтом.

Двухстоечные токарно-карусельные станки. 22.2 Подвесной пульт управления станка модели 1512.

Электрическая схема токарного станка. Рассмотренные выше элементы составляют электрооборудование станка, а взаимодействие их определяется
Фрезерное дело.

Слесарное дело.
Рассмотрим конструкцию широко применяемого при обработке металлов резанием инструмента — токарного резца.

§ 7. Приспособления и приемы токарно-расточных работ. Способы обработки деталей штампов. § 1. Рабочее место слесаря-инструментальщика по штампам.

Элементы режима резания

Помощь студентам

К основным элементам режима резания относят глубину, подачу и скорость резания. Рассмотрим схему резания при точении на примере обтачивания цилиндрической поверхности на токарном станке.

Глубина резания

t – глубина резания, величина снимаемого слоя металла, измеряемая перпендикулярно к обработанной поверхности и снимаемая за один проход режущего инструмента:

где Dзаг – диаметр обрабатываемой поверхности, мм;

d – диаметр обработанной поверхности, мм;

Глубина резания t принимается обычно равной припуску. При чистовом проходе t должна быть не более 1…2 мм.

Рисунок 4.1 – Элементы резания и геометрия срезаемого слоя

Подача

Подача S – величина (путь) перемещения режущей кромки за один оборот обрабатываемой заготовки, либо за один ход заготовки или инструмента в направлении движения подачи, мм/об, мм/дв.ход.

Подачу назначают из условия обеспечения требуемой шероховатости обрабатываемой поверхности. Обычно работают на Sпр = (0,20…0,25) мм/об. Высокая чистота получается при работе на Sпр = 0,03…0,05 мм/об.

Эти параметры элементы режима резания t и S непосредственно влияют на размеры снимаемой стружки, так:

а – толщина срезаемого слоя, расстояние между двумя последовательными положениями главной режущей кромки за один оборот заготовки определяется а = S · sinφ;

в – ширина срезаемого слоя, расстояние между обрабатываемой и обработанной поверхностями, измеренное по поверхности резания: в=t/ sinφ .

Заштрихованная площадь называется площадью поперечного сечения срезаемого слоя F:

F = t · S = a · b, мм 2 .

Скорость резания

V – скорость резания, путь перемещения обрабатываемой поверхности заготовки относительно режущей кромки резца в единицу времени, м/мин.

n – число оборотов заготовки/мин.

Если главное движение возвратно–поступательное, (например строгание), а скорости рабочего и холостого ходов различны, то скорость резания в м/мин находят по следующей зависимости

где L – расчетная длина хода инструмента;
m – число двойных ходов инструмента в мин;
К – коэффициент показывающий отношение скоростей рабочего и холостого ходов.

Для повышения производительности процесса обработки V резания должна быть наибольшей. Однако, скорость резания ограничивается стойкостью режущей кромки инструмента, т.е.

где Т – стойкость инструмента, т.е. способность сохранять в рабочем состоянии режущие кромки (до достижения критического критерия затупления hзкр);

Сv – коэффициент учитывающий конкретные условия обработки: физико-механические свойства обрабатываемого материала, качество поверхности заготовки, углы резца, условия охлаждения и т.д.;

хy и yv – показатели степени при глубине резания t и подаче S, точно также как и Сv указаны в нормативных справочниках по резанию. Для определения оптимальной скорости резания нужен экономический анализ, необходимо выяснить, что выгоднее – повышение скорости резания или повышение стойкости инструмента. Например, расчетами или опытами выявлено, что при скоростях резания

Читайте так же:
Схема реле регулятора 1213702
V, м/с1,21,51,72,0
Т, сек42516610033

Анализируя эти результаты можно отметить, что увеличение скорости резания на 25% приводит к снижению стойкости резца почти в три раза. Поэтому нужно учитывать, что по времени выгоднее – увеличение скорости или сохранение стойкости? В справочниках имеются рекомендуемые скорости резания V для данных конкретных условий обработки. При назначении V учитывают ее влияние на шероховатость поверхности, которая оказывает существенное влияние на износостойкость рабочих поверхностей детали, ее усталостную и коррозионную стойкость, а также на коэффициент полезного действия машин.

Шероховатость – один из показателей качества поверхности оценивается высотой, формой, направлением неровностей, включающая выступы и впадины на поверхности деталей, характеризующиеся малыми шагами т.е.

Она характеризуется тремя высотными параметрами Ra, Rr, Rmax двумя шаговыми Sm, S и относительной опорной длиной tр.

На шероховатость влияют режим резания, геометрия инструмента, вибрации, физико-механические свойства материала заготовки.

По современным представлениям сила трения Fт включает силу молекулярного взаимодействия контактирующих поверхностей и силу сопротивления их перемещению вследствие зацепления неровностей.

При благоприятном профиле износостойкость детали выше за счет меньшей величины контактных напряжений. Необходимо иметь ввиду, что усталостные разрушения вызываются знакопеременными нагрузками и трещины при этом развиваются с поверхности, причем в местах наиболее напряженных, т.е. во впадинах, где высокая степень пластического деформирования.

Следовательно скорость резания назначается таким образом, чтобы через определенное время (период стойкости Т) резец износился до значения критерия h3. Так Т = 30…60 мин для резцов из быстрорежущей стали и Тmax = 90 мин – для резцов с напаянными твердыми сплавами.

Пример

Для определенных условий обработки на токарно-винторезном станке модели IК62 определим значения теоретической скорости резания Vт:

  • – при точении проходным резцом, оснащенным напаянной пластиной из твердого сплава ВК8
  • , м/мин;
  • – при точении проходным резцом, оснащенным напаянной пластиной из твердого сплава Р18
  • , м/мин.

Значения Сv = 5640 и 1500, m = 0,8, Хv = 0,55 и Уv = 0,55 приняты из справочных нормативных материалов по резанию.

Необходимо отметить, что скорость резания не оказывает существенного влияния на шероховатость, как значение подачи.

По паспортным данным станка IК62 определяем фактическую скорость резания Vд.

Расчетная частота вращения шпинделя, пр (для Vт = 120 м/мин):

На станке Vт – теоретическая скорость резания для данных условий обработки, м/мин; Dз – диаметр заготовки, мм.

Машинное время обработки определяется по формуле

где l – длина заготовки, мм;

l2 – длина перебега, по нормативным таблицам: для глубины резания

где d – диаметр, обработанной поверхности;

l1 – длина врезания

где φ – главный угол в плане проходного резца, примем равным 60°.

S – продольная подача резца за один оборот заготовки. Теоретическое значение подачи S = 0,6 мм/об заменяем величиной ближайшей подачи, имеющейся на станке IК62, т.е. S = 0,61 мм/об.

Мощность Nр, затрачиваемую на процесс резания, при силе резания Рz = 300 кГ определяем по формуле

Необходимая мощность электродвигателя для выполнения заданного режима обработки

где η – коэффициент полезного действия (кпд), равный 0,75.

Коэффициент загрузки станка IК62 для указанной обработки, при мощности его электродвигателя Nст = 10 кВт.

К параметрам процесса резания относят основное (технологическое) время обработки – время, затрачиваемое непосредственно на процесс изменения формы, размеров и шероховатости обрабатываемой поверхности заготовки.

При токарной обработке цилиндрической поверхности основное (машинное) время и элементы режима резания связаны зависимостью

где Li = l + l1 + l2 – путь режущего инструмента относительно заготовки в направлении подачи ( l – длина обрабатываемой поверхности, мм; l1 = t·ctgφ – величина врезания резца, мм; l2 = 1–3 мм выход резца (перебег)), i =H/t число рабочих ходов резца, необходимое для снятия материала, оставленного на обработку (Н – толщина удаляемого слоя металла, мм).

В целом штучное время состоит

где Тв – вспомогательное время необходимое для выполнения действий, связанных с подготовкой к процессу резания (подвод и отвод инструмента, установка и снятие заготовки и т.д.);

Тоб – время обслуживания рабочего места, оборудования и инструмента в рабочем состоянии;

Читайте так же:
Химический элемент медь описание для 7 класса

Тп – время на отдых и естественные потребности, отнесенное к одной детали.

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

32 Отделочная обработка цилиндрических поверхностей.

Для получения тонкой и чистой окончательно отделанной наружной цилиндрической поверхности зависимости от предъявляемых требований и характера детали различные виды чистовой отделочной обработки. К их числу относятся: тонкое (алмазное) точение, шлифование, притирка (доводка), механическая доводка абразивными колеблющимися брусками (суперфиниширование), полирование, обкатывание роликами, обдувка дробью.

Тонкое (алмазное) точение применяется главным образом для отделочной обработки деталей из цветных металлов и сплавов (бронзы, латуни, алюминиевых сплавов и т. п.) и отчасти для деталей из чугуна и стали. Объясняется это тем, что шлифование цветных металлов значительно труднее, чем стали и чугуна, вследствие быстрого засаливания шлифовального круга.

При тонком точении обработка производится алмазными резцами или резцами, оснащенными твердыми сплавами.

Тонкое точение характеризуется высокими скоростями резания при малой подаче и малой глубине резания. Тонкое точение производится на быстроходных станках. К ним предъявляются особые требования в отношении жесткости, твердости, вибрации и устойчивости, а также зазоров шпинделей подшипников.вибрации и устойчивости, а также зазоров шпинделя в подшипниках. При соблюдении этих требований алмазным точением достигаются точность обработки 2-го класса и выше и 8—10-й классы шероховатости поверхности. Производительность обработки деталей при тонком точении выше, чем при шлифовании.

Алмазные резцы обычной конструкции состоят из двух основных частей — алмаза и стальной державки. Стойкость алмазных резцов обычно выше стойкости твердосплавных резцов в десятки раз. Себестоимость обработки деталей алмазными резцами в среднем в 1,5—2 раза меньше, чем твердосплавными, и в 3—4 раза меньше, чем резцами из быстрорежущей стали.

Притирка служит для окончательной отделки предварительно отшлифованных поверхностей деталей. Притирка наружных цилиндрических поверхностей выполняется притиром, изготовляемым из чугуна, бронзы или меди. Для изготовления абразивного порошка используют корунд, окись хрома, окись железа и др. Пасты состоят из абразивных порошков и химически активных веществ. Они имеют различный состав. Например, применяется паста из воска и парафина, смешанных с салом и керосином. Пасты ГОИ содержат в качестве абразива окись хрома и в качестве связки — олеиновую и стеариновую кислоты.

Пасты ускоряют процесс притирки, так как входящие в них химически активные вещества окисляют обрабатываемую поверхность и образующаяся мягкая пленка удаляется абразивными зернами.

В единичном производстве и ремонтных мастерских притирку наружных цилиндрических поверхностей деталей, например шеек валов, производят на обычном токарном станке притиром в виде чугунной, медной, бронзовой втулки, выточенной по размеру притираемой детали.

При доводке полезно смазывать обрабатываемую деталь маслом или керосином.

Припуск на доводку оставляют около 5—-20 мкм на диаметр. Скорость вращения детали при доводке 10—20 м/мин. В крупносерийном и массовом производстве притирка ведется на специальных притирочных станках, которые применяются главным образом для притирки коротких цилиндрических деталей, например поршневых пальцев.

В этом случае притирка осуществляется между двумя чугунными или абразивными дисками, расположенными эксцентрично по отношению друг к другу (рис. 67, а), что создает при вращении обоих дисков или только нижнего движения качения и скольжения, благодаря чему притирка происходит по кривой. Детали вставляются в специальную обойму, находящуюся между дисками. При чугунных дисках притирка производится с применением масла с абразивным порошком, при абразивных дисках применяется только охлаждение. Притиркой достигается высокий класс точности 1 класс, и шероховатости 12-14.

Механическая доводка абразивными колеблющимися брусками (суперфиниш)

Суперфиниш представляет собой метод особо чистой доводки поверхностей: плоских, круглых, выпуклых, вогнутых, внутренних наружных и пр., применяемый наиболее часто в автомобильной промышленности. Суперфиниш представляет собой обработку поверхности головкой с абразивными колеблющимися брусками, причем осуществляются три, а иногда и более движений: помимо вращения детали и продольного передвижения брусков последние совершают и колебательное движение. Главным рабочим движением является колебательное движение головки с абразивными брусками, направленное вдоль их оси; при этом ход брусков составляет 2—6 мм, а число двойных ходов (колебаний) в минуту 200—1000. Идея суперфиниша основана на так называемом принципе «неповторяющегося следа», заключающемся в том, что каждое отдельное зерно абразива не проходит дважды по одному и тому же пути. Число двойных колебании брусков должно находиться в определенном соотношении с числом оборотов обрабатываемой детали. Скорость резания при суперфинише весьма низкая — от 1 до 2,5 м/мин.

Читайте так же:
Самодельная точилка для ножей чертежи размеры

Удельное давление абразивных брусков на обрабатываемую поверхность при суперфинише очень мало, вследствие этого поверхность при обработке не нагревается и высота гребешков получается меньше, чем при хонинговальном процессе.

Охлаждение при суперфинише имеет большое значение для получения чистой поверхности. Здесь особенно важна смазывающая способность охлаждающей жидкости. Обычно применяется керосин с маслом.

Одна из задач суперфиниша — уничтожить, насколько возможно, риски, оставшиеся на поверхности от предыдущей механической обработки. Шероховатость поверхности, обработанной методом суперфиниша, достигает 14-го класса.

При обработке шеек коленчатого вала методом суперфиниша абразивные бруски, укрепленные в головке, совершают 450 двойных колебаний в минуту с амплитудой 5 мм. Коленчатый вал совершает 135 оборотов в минуту. Охлаждающая жидкость поступает к брускам непрерывно. Все шатунные и коренные шейки обрабатываются одновременно примерно за 20 сек.

Полирование — это процесс чистовой обработки поверхности мягким кругом с нанесенным на него мелкозернистым абразивным порошком, смешанным со смазкой.

Материалом для полировальных кругов служат войлок, фетр, парусина, кожа.

Новым видом абразивного инструмента являются полировальные круги с графитовым наполнителем.

В состав полировальных кругов входят в основном естественный корунд, бакелитовая связка и карандашный графит в качестве наполнителя.

При полировании желобов колец шариковых подшипников используются текстильные жгуты покрутые абразивными пастами.

Полированием не исправляются погрешности геометрической формы, а также местные дефекты, полученные или оставшиеся от предыдущих операций. Полированием достигается шероховатость поверхности 12—13-го класса, но не обеспечивается высокая точность. Полированная поверхность имеет блестящий, зеркальный вид. Полирование ведется при высокой скорости полировального круга или абразивной ленты (до 40 м/сек). В массовом и крупносерийном производстве для полирования применяют многошпиндель­ные полировальные автоматы.

Точение как способ обработки металла до нужной формы

Чтобы получить из металлической болванки черновую заготовку, а затем и необходимую деталь, используется такой тип обработки, как точение, наряду с некоторыми другими видами токарных операций.

1 Что такое точение – черновое и чистовое

Деревянные резные балясины, ножки столиков и стульев, металлические детали в узлах механизмов – все эти изделия сложной формы почти наверняка были изготовлены на токарном станке. Конечно, многие виды продукции из стали и других сплавов можно получить литьем, ковкой, штамповкой и фрезерованием, однако в большинстве случаев нужный результат обеспечивают при помощи простейшей операции, а именно – точения. Так называют любой вид обработки внешней торцевой или вращающейся поверхности посредством воздействия на нее лезвием резца. Применение режущего инструмента для внутренних поверхностей осуществляется в процессе растачивания.

На фото - процесс растачивания, kvant-garant.ru

Операции точения возможны только при вращении детали, закрепленной в кулачковом или цанговом механизме фиксирующего патрона и при значительной длине прижатой центром задней бабки. По большей части обработке подвергаются цилиндрические заготовки, за исключением случаев торцевого подрезания и растачивания отверстий, когда допускаются иные формы болванок, с закреплением их только в кулачковом патроне. Если передача вращения применяется на сам резец, это уже не точение, а фрезерование. Именно поэтому при расточке к внутренней поверхности вращающейся обрабатываемой детали подводится неподвижно закрепленный инструмент.

Фото операции точения, vek.dp.ua

Черновое точение отличается от тонкого чистового силой воздействия лезвия резца на торцевую или цилиндрическую поверхность, а также скоростью вращения детали, что в итоге дает очень малое сечение образующейся стружки. Иными словами, обтачивание применяется для удаления мельчайших шероховатостей, а точение – для придания необходимой формы металлической или деревянной заготовке. При этом тонкая обработка осуществляется с минимальной глубиной погружения резца: до 0,3 миллиметра при первых проходах и до 0,05 миллиметров при завершающих.

2 Как происходит растачивание отверстий?

В токарных работах используется огромное количество разнообразных резцов, ряд которых необходим для расточных операций. При этом выбор инструмента для черновых проходов зависит от того, сквозное отверстие нужно обрабатывать или глухое. Отдельные резцы применяются для чистового растачивания, независимо от типа отверстия. Рассматриваемый вид токарной обработки деревянной или металлической заготовки осуществляется при закреплении последней в кулачковом патроне, без упора в центр задней бабки. Инструмент, зажатый в держателе, располагается по оси вращения заготовки, ею выполняют поступательное движение с постепенным отклонением от центра.

Читайте так же:
Устройство варочной газовой панели

На фото - растачивание отверстия, mip.zavod-vtuz.ru

Как правило, растачивание отверстий осуществляется после сверления, однако в некоторых случаях необходимо произвести внутреннюю обработку канавок или пазов, сделанных на фрезерном станке. Каждый раз при этом происходит увеличение диаметра по всей глубине отверстия или на определенном его отрезке. Первый тип работ осуществляется проходным инструментом, а второй вариант имеет место при необходимости вытачивания внутренней канавки с помощью прорезного лезвия. Также с помощью расточного инструмента может быть выполнена обработка внутреннего торца глухого углубления, для чего используются подрезной резец.

Фото обработки внутреннего торца детали, livemaster.ru

Все инструменты, использующиеся при растачивании, имеют меньшую жесткость, чем резцы для наружных операций, вследствие чего скорость вращения детали следует понижать на 10-20 % в сравнении с внешними токарными работами. Также при обработке углублений существуют и другие подводные камни, требующие удвоенного внимания. В частности, очень трудно наблюдать за протеканием процесса, так как стружка снимается внутри отверстия. Еще одна сложность – необходимость выдвигать резец из держателя несколько дальше, чем требует глубина глухого отверстия, из-за чего обработка удаленных отрезков внутренней стенки может быть нарушена пружинящим инструментом.

3 Подрезание металла – поэтапный обзор операции

Выше уже упоминался специальный подрезной инструмент для токарных работ, необходимый для обработки торцевых поверхностей, а также уступов, как внешних, так и внутренних, расположенных в углублении. Перечисленные операции выполняются движением резца вдоль оси вращения, от центра к краю торца. Лезвие подрезного инструмента обычно имеет две заточенные кромки: длинную, которая располагается под небольшим углом к обрабатываемой поверхности, и короткую, отклоненную на 15-20 градусов от оси вращения заготовки.

На фото - подрезной резец, almaty.all.biz

Однако помимо вышеназванного резца существуют и другие, например, упорный и отогнутый, причем второй бывает проходным. Заточка обоих вариантов несколько отличается от описанной ранее. Упорный тип удобен тем, что им можно выполнять операции с продольной и поперечной подачей. В тех же случаях, когда подрезание выполняется в непосредственной близости от патрона, а также при обработке труднодоступных уступов в отверстиях, возникает необходимость в отогнутых резцах, в том числе и проходных. Последними обычно работают с поперечной подачей.

Фото отогнутого резца, 4307.ua.all.biz

Примечательно, что все операции на торцах можно выполнять не только зажатием в кулачках, но и при фиксации заготовки с упором в центр задней бабки. Правда, в этом случае рекомендуется применять так называемый «полуцентр», на треть толщины которого по всей длине отсутствует сегмент. Таким образом, обеспечивается возможность обрабатывать весь торец от края к центру подрезным лезвием. При работе с торцом зажатой в патроне детали лучше действовать проходным отогнутым инструментом.

4 Тонкое обтачивание различных поверхностей

Процесс обтачивания, по сути, является аналогом тонкого чистового точения, о котором говорилось выше. Выполняется эта операция при высокой частоте вращения заготовки, от 1500 до 2000 оборотов в минуту. При этом подача резца выполняется на шаг, не превышающий 0,6 ширины режущей кромки на один оборот детали. Следует отметить, что лезвие инструмента обычно применяется широкое, располагается оно параллельно обрабатываемой поверхности. При минимальной глубине резания после обтачивания не требуется шлифование металла, поскольку все шероховатости снимаются при чистовых проходах.

На фото - процесс обтачивания, 4ne.ru

Режущая кромка инструмента должна обладать высокой прочностью, лезвия выполняются из твердых сплавов, а также снабжаются алмазными и эльборовыми вставками.

Фото резцов с алмазными вставками, cpu.uralkomplect.ru

Как правило, операции обтачивания применяются для цветных металлов, а также их сплавов, значительно реже им подвергаются заготовки из стали и чугуна. Скорости вращения для каждого вида металла выбираются разные. В частности, для чугуна необходима скорость 100-150 метров в минуту, стальные детали обтачиваются при частоте оборотов 150-250 метров в минуту, а цветные металлы и их сплавы обрабатываются при вращении кулачкового патрона от 1000 метров в минуту.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector